PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1669.
Published online 2010 June 16. doi:  10.1107/S1600536810021914
PMCID: PMC3006783

Methyl 4-methyl­sulfonyl-2-nitro­benzoate

Abstract

The title compound, C9H9NO6S, was prepared by the reaction of methanol and thionyl chloride with 4-methyl­sulfonyl-2-nitro­benzoic acid under mild conditions. The dihedral angle between the nitro group and benzene ring is 21.33 (19)° and that between the carboxyl­ate group and the benzene ring is 72.09 (17)°. The crystal structure is stabilized by weak inter­molecular bifurcated C—H(...)O inter­actions occurring in the (100) plane.

Related literature

For general background to the synthesis and properties of 4-methyl­sulfonyl-2-nitro-benzoic acid methyl ester, see: Carter et al. (1991 [triangle]). For the biological activity of 4-methyl­sulfonyl-2-nitro-benzoic acid methyl ester derivatives, see: Kopsell et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1669-scheme1.jpg

Experimental

Crystal data

  • C9H9NO6S
  • M r = 259.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1669-efi1.jpg
  • a = 9.0108 (12) Å
  • b = 8.7671 (11) Å
  • c = 14.4761 (19) Å
  • β = 98.955 (2)°
  • V = 1129.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 273 K
  • 0.20 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART APEXII CCD detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.942, T max = 0.948
  • 9661 measured reflections
  • 2783 independent reflections
  • 2042 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.111
  • S = 1.05
  • 2783 reflections
  • 156 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021914/kj2147sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021914/kj2147Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Natural Science Foundation of China (No. 20872030) and Heilongjiang University, China, for supporting this study.

supplementary crystallographic information

Comment

4-methylsulfonyl-2-nitro-benzoic acid methyl ester is used for preparation of mesotrione, which inhibits a critical enzyme, phytoene desaturase, in plant carotenoidbiosynthesis (Kopsell et al., 2009).

The structure of the title compound is shown in Fig. 1. The dihedral angle between the nitro group and benzene ring is 21.33 (19)°. The dihedral angle between the carboxyl group and benzene ring is 72.09 (17)°. The crystal structure is stabilized by weak intermolecular bifurcated C—H···O interactions (the sum of the angles involving H6 as the central atom is 360 (3)°) occurring in the (100) plane (Table 1), resulting in a two-dimensional network (Fig. 2).

Experimental

Thionyl chloride (250 mmol) was added to a solution of 4-methylsulfonyl-2-nitro-benzoic acid (50 mmol) in anhydrous toluene (250 ml). After stirring the reaction mixture for 10 h at room temperature, the solvent was removed and methanol (100 ml) was added. The reaction mixture was further stirred for 3 h at 323 K. The resulting oil was washed with water (100 ml). After separation from the water phase, the product was concentrated under reduced pressure and the residue was recrystallized from methanol to give the title compound in a yield of 80% (Carter et al., 1991). Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from ethanol at room temperature in a yield of 60%. Analysis found: C 41.7, H 3.4, N 5.3%; C9H9NO6S requires: C 41.7, H 3.5, N 5.4%.

Refinement

All H atoms were placed in idealized positions [C—H = 0.96 (methyl) and 0.93 Å(aromatic)] and included in the refinement in the riding-model approximation, with Uiso(H)= 1.5 Ueq(methyl C) and 1.2 Ueq(aromatic C).

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Part of packing of the crystal structure of the title compound, viewed down the b direction. Dashed lines indicate hydrogen bonds.

Crystal data

C9H9NO6SF(000) = 536
Mr = 259.23Dx = 1.524 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2311 reflections
a = 9.0108 (12) Åθ = 2.9–25.0°
b = 8.7671 (11) ŵ = 0.30 mm1
c = 14.4761 (19) ÅT = 273 K
β = 98.955 (2)°Block, colorless
V = 1129.7 (3) Å30.20 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART APEX CCD detector diffractometer2783 independent reflections
Radiation source: fine-focus sealed tube2042 reflections with I > 2σ(I)
graphiteRint = 0.028
phi and ω scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.942, Tmax = 0.948k = −11→10
9661 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.047P)2 + 0.3279P] where P = (Fo2 + 2Fc2)/3
2783 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1−0.24972 (5)0.42896 (5)0.03839 (4)0.04280 (16)
O60.42147 (14)0.11875 (17)0.20037 (9)0.0491 (4)
O50.28877 (18)−0.09358 (17)0.15947 (13)0.0665 (5)
O40.32570 (17)0.07267 (19)−0.01616 (11)0.0608 (4)
O30.12224 (18)0.08499 (19)−0.11609 (9)0.0581 (4)
O2−0.26056 (19)0.53991 (19)0.10923 (12)0.0694 (5)
O1−0.24582 (17)0.48263 (19)−0.05419 (11)0.0613 (4)
N10.19276 (18)0.10350 (18)−0.03781 (11)0.0399 (4)
C1−0.3960 (2)0.2976 (3)0.0338 (2)0.0737 (8)
H1A−0.49050.34960.01880.111*
H1B−0.39090.24820.09340.111*
H1C−0.38720.2227−0.01340.111*
C2−0.0851 (2)0.3192 (2)0.07342 (12)0.0383 (4)
C40.11351 (19)0.16778 (19)0.03452 (11)0.0333 (4)
C3−0.01499 (19)0.2509 (2)0.00566 (12)0.0361 (4)
H3−0.05350.2607−0.05750.043*
C50.1726 (2)0.1479 (2)0.12854 (12)0.0380 (4)
C80.3013 (2)0.0425 (2)0.16253 (13)0.0417 (4)
C7−0.0276 (2)0.3049 (3)0.16756 (13)0.0502 (5)
H7−0.07500.35260.21240.060*
C60.1005 (2)0.2193 (2)0.19439 (13)0.0489 (5)
H60.13880.20940.25760.059*
C90.5498 (2)0.0281 (3)0.24167 (17)0.0684 (7)
H9A0.5205−0.03870.28820.103*
H9B0.62850.09450.27030.103*
H9C0.5853−0.03130.19390.103*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0366 (3)0.0341 (3)0.0543 (3)0.00290 (19)−0.0033 (2)0.0009 (2)
O60.0375 (7)0.0557 (9)0.0497 (8)−0.0009 (6)−0.0073 (6)0.0037 (6)
O50.0590 (10)0.0406 (9)0.0924 (12)0.0075 (7)−0.0115 (9)0.0010 (8)
O40.0422 (8)0.0762 (11)0.0641 (10)0.0123 (8)0.0087 (7)−0.0088 (8)
O30.0607 (9)0.0771 (11)0.0362 (8)0.0002 (8)0.0061 (7)−0.0069 (7)
O20.0670 (11)0.0601 (10)0.0752 (11)0.0246 (8)−0.0075 (8)−0.0210 (8)
O10.0565 (10)0.0612 (10)0.0608 (9)0.0055 (8)−0.0081 (7)0.0182 (8)
N10.0409 (9)0.0378 (9)0.0414 (9)−0.0030 (7)0.0072 (7)0.0010 (6)
C10.0395 (12)0.0476 (14)0.134 (2)−0.0002 (10)0.0131 (13)0.0101 (14)
C20.0344 (9)0.0383 (10)0.0400 (10)0.0025 (8)−0.0006 (7)0.0024 (7)
C40.0332 (9)0.0318 (9)0.0341 (9)−0.0039 (7)0.0029 (7)−0.0008 (7)
C30.0353 (9)0.0368 (10)0.0341 (9)−0.0032 (7)−0.0010 (7)0.0025 (7)
C50.0376 (9)0.0357 (10)0.0380 (9)0.0016 (7)−0.0022 (7)−0.0004 (7)
C80.0387 (10)0.0458 (12)0.0383 (10)0.0032 (8)−0.0015 (7)0.0010 (8)
C70.0546 (12)0.0569 (13)0.0381 (10)0.0170 (10)0.0038 (9)−0.0044 (9)
C60.0561 (12)0.0555 (12)0.0318 (9)0.0145 (10)−0.0037 (8)−0.0028 (9)
C90.0412 (12)0.0959 (19)0.0622 (14)0.0130 (12)−0.0100 (10)0.0143 (13)

Geometric parameters (Å, °)

S1—O11.4260 (16)C2—C31.383 (3)
S1—O21.4278 (16)C2—C71.386 (2)
S1—C11.744 (2)C4—C31.377 (2)
S1—C21.7749 (18)C4—C51.393 (2)
O6—C81.317 (2)C3—H30.9300
O6—C91.453 (2)C5—C61.384 (3)
O5—C81.198 (2)C5—C81.504 (3)
O4—N11.220 (2)C7—C61.381 (3)
O3—N11.221 (2)C7—H70.9300
N1—C41.469 (2)C6—H60.9300
C1—H1A0.9600C9—H9A0.9600
C1—H1B0.9600C9—H9B0.9600
C1—H1C0.9600C9—H9C0.9600
O1—S1—O2117.69 (11)C4—C3—C2117.99 (15)
O1—S1—C1108.11 (12)C4—C3—H3121.0
O2—S1—C1109.99 (13)C2—C3—H3121.0
O1—S1—C2107.80 (9)C6—C5—C4117.83 (16)
O2—S1—C2108.17 (9)C6—C5—C8118.24 (16)
C1—S1—C2104.24 (10)C4—C5—C8123.69 (17)
C8—O6—C9116.36 (18)O5—C8—O6125.95 (18)
O4—N1—O3123.86 (17)O5—C8—C5122.42 (17)
O4—N1—C4117.96 (15)O6—C8—C5111.49 (17)
O3—N1—C4118.18 (15)C6—C7—C2119.59 (18)
S1—C1—H1A109.5C6—C7—H7120.2
S1—C1—H1B109.5C2—C7—H7120.2
H1A—C1—H1B109.5C7—C6—C5120.91 (17)
S1—C1—H1C109.5C7—C6—H6119.5
H1A—C1—H1C109.5C5—C6—H6119.5
H1B—C1—H1C109.5O6—C9—H9A109.5
C3—C2—C7121.07 (17)O6—C9—H9B109.5
C3—C2—S1119.07 (13)H9A—C9—H9B109.5
C7—C2—S1119.85 (15)O6—C9—H9C109.5
C3—C4—C5122.57 (16)H9A—C9—H9C109.5
C3—C4—N1117.78 (15)H9B—C9—H9C109.5
C5—C4—N1119.60 (15)
O1—S1—C2—C3−25.21 (18)N1—C4—C5—C6175.52 (17)
O2—S1—C2—C3−153.45 (16)C3—C4—C5—C8172.23 (17)
C1—S1—C2—C389.52 (18)N1—C4—C5—C8−10.2 (3)
O1—S1—C2—C7153.91 (17)C9—O6—C8—O50.2 (3)
O2—S1—C2—C725.7 (2)C9—O6—C8—C5175.83 (17)
C1—S1—C2—C7−91.4 (2)C6—C5—C8—O5103.2 (2)
O4—N1—C4—C3157.53 (17)C4—C5—C8—O5−71.0 (3)
O3—N1—C4—C3−22.0 (2)C6—C5—C8—O6−72.6 (2)
O4—N1—C4—C5−20.2 (2)C4—C5—C8—O6113.1 (2)
O3—N1—C4—C5160.31 (17)C3—C2—C7—C6−0.9 (3)
C5—C4—C3—C21.4 (3)S1—C2—C7—C6179.96 (17)
N1—C4—C3—C2−176.25 (15)C2—C7—C6—C50.2 (3)
C7—C2—C3—C40.2 (3)C4—C5—C6—C71.2 (3)
S1—C2—C3—C4179.26 (13)C8—C5—C6—C7−173.4 (2)
C3—C4—C5—C6−2.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.543.370 (2)148
C6—H6···O3ii0.932.593.216 (2)125

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2147).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Carter, C. G., Lee, D. L., Michaely, W. J. & Kraatz, G. W. (1991). US Patent No. 5 006 158.
  • Kopsell, D. A., Armel, G. R., Mueller, T. C. & Sams, C. E. (2009). J. Agric. Food Chem.57, 6362–6368. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography