PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1726.
Published online 2010 June 23. doi:  10.1107/S1600536810022348
PMCID: PMC3006782

4-Meth­oxy­anilinium hexa­fluoro­phosphate monohydrate

Abstract

In the structure of the title compound, C7H10NO+·PF6 ·H2O, the protonated 4-meth­oxy­anilinium cations and hexa­fluoro­phosphate anions are bridged by the water mol­ecule via N—H(...)O and O—H(...)F hydrogen bonds. The resulting zigzag chains extend along the c axis. In addition, C—H(...)π inter­actions are observed in the crystal packing.

Related literature

The title compound was studied as part of our search for ferroelectric compounds, which usually have a phase transition. For background to phase-transition materials, see: Li et al. (2008 [triangle]); Zhang et al. (2009 [triangle]); Fu (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1726-scheme1.jpg

Experimental

Crystal data

  • C7H10NO+·PF6 ·H2O
  • M r = 287.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1726-efi1.jpg
  • a = 15.152 (3) Å
  • b = 5.079 (1) Å
  • c = 14.758 (3) Å
  • β = 94.26 (3)°
  • V = 1132.6 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 298 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.939, T max = 0.939
  • 11166 measured reflections
  • 2602 independent reflections
  • 2083 reflections with I > 2σ(I)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.145
  • S = 1.06
  • 2602 reflections
  • 199 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022348/im2206sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022348/im2206Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Starter Fund of Southeast University for financial support in purchasing the X-ray diffractometer.

supplementary crystallographic information

Comment

As a continuation of our study of dielectric-ferroelectric materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009) and organic-inorganic hybrid materials, we studied the dielectric properties of the title compound. Unfortunately, there was no distinct anomaly observed from 93 K to 350 K, suggesting that this compound should be not a real ferroelectric material or there may be no distinct phase transition occurred within the measured temperature range. The crystal structure of 4-methoxyanilinium bromide is known (Fu, 2009). In this article, the crystal structure of the title compound is presented.

The asymmetric unit of the title compound consists of an almost planar 4-methoxyanilinium cation with a mean deviation from the plan of 0.0512 Å, a disordered hexafluorophosphate anion and a water molecule (Fig.1). N—H···F, N—H···O and O—H···F hydrogen bonds link the cations, anions and water molecules to chains along c axis (Fig.2). The C—H···π interactions with a C7···Cg1 distance of 4.013 (5) Å are also observed in the crystal packing.

Experimental

1.23 g (10 mmol) 4-Methoxyaniline was dissolved in 10 ml e thanol, to which hexafluorophosphoric acid in aqueous solution (70% w/w) was then added under stirring until the pH of the solution was ca 6. Ethanol was added until all suspended substrates disappeared. Single crystals of the title compound were prepared by slow evaporation of the acidic solution at room temperature of the acidic solution after 3 days giving a yield of 85%.

Refinement

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) for the methyl group. H atoms bonded to N and O atoms were found in the difference Fourier maps and were refined using restraints for O—H and N—H bond distances (0.85–0.86 Å) and angles at the corresponding O and N atoms. Thermal parameters of these hydrogen atoms were refined freely.

Figures

Fig. 1.
Molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
View of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.

Crystal data

C7H10NO+·PF6·H2OF(000) = 584
Mr = 287.15Dx = 1.684 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5000 reflections
a = 15.152 (3) Åθ = 3.1–27.6°
b = 5.079 (1) ŵ = 0.32 mm1
c = 14.758 (3) ÅT = 298 K
β = 94.26 (3)°Prism, colourless
V = 1132.6 (4) Å30.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer2602 independent reflections
Radiation source: fine-focus sealed tube2083 reflections with I > 2σ(I)
graphiteRint = 0.052
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = −19→19
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −6→6
Tmin = 0.939, Tmax = 0.939l = −19→18
11166 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0694P)2 + 0.5932P] where P = (Fo2 + 2Fc2)/3
2602 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.45 e Å3
3 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N10.83257 (13)0.3532 (5)0.34412 (16)0.0380 (5)
H1B0.8411 (18)0.369 (5)0.287 (2)0.044 (7)*
H1A0.8573 (19)0.507 (6)0.368 (2)0.054 (8)*
H1C0.858 (2)0.217 (7)0.365 (2)0.059 (9)*
C10.73739 (14)0.3340 (4)0.35733 (15)0.0341 (5)
C60.70834 (17)0.1498 (5)0.41677 (18)0.0464 (6)
H6A0.74820.03650.44790.056*
C40.56043 (16)0.3061 (5)0.38507 (18)0.0456 (6)
C20.67959 (18)0.5003 (5)0.3115 (2)0.0523 (7)
H2A0.70010.62200.27090.063*
O10.47356 (12)0.2800 (5)0.40334 (16)0.0671 (6)
C50.61892 (17)0.1359 (6)0.42951 (19)0.0520 (7)
H5A0.59840.01000.46860.062*
C30.58996 (18)0.4883 (6)0.3253 (2)0.0568 (8)
H3A0.55030.60250.29450.068*
C70.4131 (2)0.4775 (8)0.3713 (3)0.0747 (10)
H7A0.35500.43450.38870.112*
H7B0.41220.48780.30630.112*
H7C0.43120.64400.39730.112*
O1W0.91135 (11)−0.1445 (4)0.40178 (13)0.0430 (4)
H1WA0.925 (2)−0.165 (7)0.4589 (12)0.069 (10)*
H1WB0.9587 (16)−0.128 (8)0.3745 (18)0.082 (12)*
P10.87333 (4)0.53074 (12)0.62599 (4)0.0359 (2)
F50.8065 (12)0.680 (4)0.5640 (14)0.067 (5)0.582 (6)
F30.7987 (3)0.3110 (9)0.6454 (3)0.0524 (4)0.582 (6)
F10.8401 (3)0.7005 (8)0.7068 (3)0.0524 (4)0.582 (6)
F40.9546 (19)0.699 (6)0.5972 (19)0.069 (5)0.582 (6)
F60.9439 (11)0.379 (3)0.6897 (13)0.067 (4)0.582 (6)
F20.9045 (3)0.3475 (11)0.5434 (3)0.0524 (4)0.582 (6)
F3'0.7951 (4)0.3803 (12)0.6680 (4)0.0524 (4)0.418 (6)
F5'0.8045 (13)0.667 (4)0.5461 (19)0.046 (2)0.418 (6)
F1'0.8666 (4)0.7675 (12)0.6988 (4)0.0524 (4)0.418 (6)
F6'0.9394 (13)0.388 (4)0.7046 (18)0.047 (2)0.418 (6)
F4'0.945 (2)0.740 (8)0.598 (2)0.065 (6)0.418 (6)
F2'0.8876 (4)0.3068 (15)0.5555 (5)0.0524 (4)0.418 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0359 (11)0.0378 (11)0.0412 (12)−0.0003 (9)0.0080 (9)0.0002 (9)
C10.0338 (11)0.0351 (11)0.0340 (11)−0.0031 (9)0.0065 (9)−0.0053 (9)
C60.0441 (13)0.0461 (14)0.0498 (14)0.0043 (11)0.0088 (11)0.0103 (11)
C40.0356 (12)0.0542 (15)0.0479 (14)−0.0046 (11)0.0088 (10)−0.0055 (12)
C20.0456 (14)0.0516 (15)0.0606 (17)0.0013 (12)0.0091 (12)0.0214 (13)
O10.0357 (10)0.0845 (15)0.0826 (15)−0.0045 (10)0.0152 (9)0.0085 (12)
C50.0486 (15)0.0540 (16)0.0552 (16)−0.0036 (12)0.0156 (12)0.0134 (13)
C30.0411 (14)0.0623 (18)0.0668 (18)0.0074 (13)0.0021 (13)0.0176 (14)
C70.0395 (15)0.100 (3)0.086 (2)0.0104 (17)0.0084 (15)−0.015 (2)
O1W0.0348 (9)0.0483 (10)0.0466 (10)−0.0002 (8)0.0074 (8)0.0041 (8)
P10.0356 (3)0.0405 (3)0.0323 (3)0.0051 (2)0.0072 (2)0.0037 (2)
F50.067 (4)0.088 (5)0.045 (8)0.016 (3)−0.004 (3)0.024 (4)
F30.0545 (9)0.0554 (14)0.0500 (10)−0.0045 (8)0.0216 (9)−0.0070 (6)
F10.0545 (9)0.0554 (14)0.0500 (10)−0.0045 (8)0.0216 (9)−0.0070 (6)
F40.053 (3)0.074 (11)0.079 (5)−0.014 (4)0.008 (3)0.016 (5)
F60.059 (4)0.102 (5)0.039 (6)0.035 (4)0.005 (3)0.008 (3)
F20.0545 (9)0.0554 (14)0.0500 (10)−0.0045 (8)0.0216 (9)−0.0070 (6)
F3'0.0545 (9)0.0554 (14)0.0500 (10)−0.0045 (8)0.0216 (9)−0.0070 (6)
F5'0.043 (4)0.060 (4)0.034 (7)0.016 (3)−0.003 (3)0.020 (4)
F1'0.0545 (9)0.0554 (14)0.0500 (10)−0.0045 (8)0.0216 (9)−0.0070 (6)
F6'0.038 (4)0.068 (5)0.037 (7)0.008 (4)0.006 (3)0.017 (4)
F4'0.070 (13)0.058 (8)0.065 (6)−0.033 (10)−0.001 (7)0.003 (5)
F2'0.0545 (9)0.0554 (14)0.0500 (10)−0.0045 (8)0.0216 (9)−0.0070 (6)

Geometric parameters (Å, °)

N1—C11.473 (3)C7—H7B0.9600
N1—H1B0.87 (3)C7—H7C0.9600
N1—H1A0.92 (3)O1W—H1WA0.860 (17)
N1—H1C0.84 (3)O1W—H1WB0.853 (17)
C1—C21.360 (3)P1—F51.516 (17)
C1—C61.377 (3)P1—F2'1.567 (8)
C6—C51.383 (3)P1—F61.571 (17)
C6—H6A0.9300P1—F3'1.576 (7)
C4—O11.370 (3)P1—F41.58 (3)
C4—C51.370 (4)P1—F11.584 (4)
C4—C31.376 (4)P1—F4'1.60 (4)
C2—C31.390 (4)P1—F1'1.621 (6)
C2—H2A0.9300P1—F31.629 (5)
O1—C71.415 (4)P1—F21.631 (6)
C5—H5A0.9300P1—F6'1.64 (2)
C3—H3A0.9300P1—F5'1.67 (2)
C7—H7A0.9600
C1—N1—H1B110.7 (18)F4—P1—F1101.9 (11)
C1—N1—H1A112.3 (18)F5—P1—F4'87.0 (17)
H1B—N1—H1A102 (3)F2'—P1—F4'100.4 (14)
C1—N1—H1C108 (2)F6—P1—F4'92.0 (16)
H1B—N1—H1C110 (3)F3'—P1—F4'166.3 (15)
H1A—N1—H1C113 (3)F1—P1—F4'95.4 (14)
C2—C1—C6121.0 (2)F5—P1—F1'87.6 (8)
C2—C1—N1119.6 (2)F2'—P1—F1'175.6 (2)
C6—C1—N1119.5 (2)F6—P1—F1'92.3 (8)
C1—C6—C5118.9 (2)F3'—P1—F1'90.73 (19)
C1—C6—H6A120.5F4—P1—F1'82.4 (11)
C5—C6—H6A120.5F4'—P1—F1'75.9 (14)
O1—C4—C5116.2 (2)F5—P1—F390.4 (8)
O1—C4—C3123.7 (3)F2'—P1—F375.58 (18)
C5—C4—C3120.1 (2)F6—P1—F390.6 (5)
C1—C2—C3120.0 (2)F4—P1—F3168.8 (12)
C1—C2—H2A120.0F1—P1—F388.68 (14)
C3—C2—H2A120.0F4'—P1—F3175.0 (12)
C4—O1—C7118.2 (2)F1'—P1—F3108.24 (18)
C4—C5—C6120.5 (2)F5—P1—F293.0 (8)
C4—C5—H5A119.7F6—P1—F286.9 (8)
C6—C5—H5A119.7F3'—P1—F2106.6 (2)
C4—C3—C2119.4 (3)F4—P1—F280.3 (11)
C4—C3—H3A120.3F1—P1—F2177.73 (15)
C2—C3—H3A120.3F4'—P1—F286.8 (14)
O1—C7—H7A109.5F1'—P1—F2162.7 (2)
O1—C7—H7B109.5F3—P1—F289.06 (16)
H7A—C7—H7B109.5F5—P1—F6'172.2 (12)
O1—C7—H7C109.5F2'—P1—F6'92.5 (9)
H7A—C7—H7C109.5F3'—P1—F6'86.9 (6)
H7B—C7—H7C109.5F4—P1—F6'88.9 (13)
H1WA—O1W—H1WB109 (2)F1—P1—F6'85.4 (10)
F5—P1—F2'94.6 (9)F4'—P1—F6'94.9 (16)
F5—P1—F6179.0 (9)F1'—P1—F6'85.6 (9)
F2'—P1—F685.5 (8)F3—P1—F6'88.3 (5)
F5—P1—F3'89.5 (8)F2—P1—F6'94.7 (10)
F2'—P1—F3'93.1 (2)F2'—P1—F5'86.7 (9)
F6—P1—F3'91.5 (6)F6—P1—F5'171.6 (12)
F5—P1—F493.9 (14)F3'—P1—F5'91.7 (8)
F2'—P1—F493.7 (11)F4—P1—F5'92.6 (14)
F6—P1—F485.1 (13)F1—P1—F5'95.1 (9)
F3'—P1—F4172.2 (10)F4'—P1—F5'86.6 (16)
F5—P1—F186.9 (8)F1'—P1—F5'95.4 (9)
F2'—P1—F1164.18 (19)F3—P1—F5'90.2 (8)
F6—P1—F193.3 (8)F2—P1—F5'84.8 (9)
F3'—P1—F171.17 (18)F6'—P1—F5'178.4 (10)
C2—C1—C6—C5−0.1 (4)O1—C4—C5—C6−178.9 (3)
N1—C1—C6—C5179.2 (2)C3—C4—C5—C61.7 (4)
C6—C1—C2—C30.9 (4)C1—C6—C5—C4−1.3 (4)
N1—C1—C2—C3−178.3 (3)O1—C4—C3—C2179.8 (3)
C5—C4—O1—C7169.6 (3)C5—C4—C3—C2−0.8 (4)
C3—C4—O1—C7−11.0 (4)C1—C2—C3—C4−0.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1C···O1W0.84 (3)2.06 (3)2.896 (3)172 (3)
N1—H1A···O1Wi0.92 (3)2.00 (3)2.917 (3)172 (3)
N1—H1B···F3ii0.87 (3)2.32 (3)3.056 (5)142 (2)
N1—H1B···F1iii0.87 (3)2.49 (3)3.049 (5)123 (2)
O1W—H1WB···F6iv0.85 (2)2.21 (4)2.91 (2)139 (3)
O1W—H1WB···F4v0.85 (2)2.57 (4)3.04 (3)116 (3)
C7—H7B···Cg1vi0.963.184.013 (5)146

Symmetry codes: (i) x, y+1, z; (ii) x, −y+1/2, z−1/2; (iii) x, −y+3/2, z−1/2; (iv) −x+2, −y, −z+1; (v) −x+2, −y+1, −z+1; (vi) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2206).

References

  • Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  • Fu, X. (2009). Acta Cryst. E65, o2344. [PMC free article] [PubMed]
  • Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem.11, 1959–1962.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc.131, 12544–12545. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography