PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1722.
Published online 2010 June 23. doi:  10.1107/S1600536810023123
PMCID: PMC3006781

1-Benzyl­piperazine-1,4-diium bis­(perchlorate) monohydrate

Abstract

In the title compound, C11H18N2 2+·2ClO4 ·H2O, one perchlor­ate anion is disordered over two orientations in a 0.66 (3):0.34 (3) ratio. Inter­molecular O—H(...)O, N—H(...)O and C—H(...)O hydrogen bonds link the cations, anions and water mol­ecules into ribbons extending along [100].

Related literature

For general background to the properties of perchlorate salts containing organic cations, see: Czarnecki et al. (1994 [triangle]); Czupinski et al. (2002 [triangle], 2006 [triangle]). For related structures, see: Antolini et al. (1982 [triangle]); Place & Willett (1988 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1722-scheme1.jpg

Experimental

Crystal data

  • C11H18N2 2+·2ClO4 ·H2O
  • M r = 395.19
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1722-efi1.jpg
  • a = 8.6632 (6) Å
  • b = 10.0197 (8) Å
  • c = 10.8831 (7) Å
  • α = 70.184 (7)°
  • β = 83.946 (6)°
  • γ = 70.560 (7)°
  • V = 838.05 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.44 mm−1
  • T = 293 K
  • 0.53 × 0.40 × 0.25 mm

Data collection

  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer
  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2006 [triangle]) T min = 0.832, T max = 0.907
  • 32031 measured reflections
  • 5885 independent reflections
  • 3882 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.240
  • S = 1.12
  • 5885 reflections
  • 255 parameters
  • 40 restraints
  • H-atom parameters constrained
  • Δρmax = 1.04 e Å−3
  • Δρmin = −0.88 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CAMERON (Watkin et al., 1996 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810023123/cv2717sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023123/cv2717Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge support by the Secretary of State for Scientific Research and Technology of Tunisia.

supplementary crystallographic information

Comment

Chemists and physicists of the solid state have shown an increasing interest in the study of perchlorate salts containing organic cations in recent years owing to their great interesting properties such as ferroelectric and dielectric behaviours. (Czarnecki et al., 1994; Czupinski et al., 2002; Czupinski et al., 2006). Here, we report the synthesis and the crystal structure of the title compound (I), [C11H18N2]2+.2ClO4-.H2O.

The crystal structure of (I) (Fig.1), contains two ClO4- anions, a 1-benzylpiperazine-1,4-diium dication and a water molecule. In its atomic arrangement, the ClO4- anions are associated per pair via O—H···O hydrogen bonds generated by a water molecule to form [Cl2O8H2O]2- entities. The 1-benzylpiperazine-1,4-diium dications are associated to these entities and connected them through N—H···O and C—H···O hydrogen bonds, leading to the formation of three dimensional network. As expected, the ClO4 anion has typical tetrahedral geometry where the Cl—O bond lengths and O—Cl—O angles are not equal to one another but very with the environment around the O atoms. In the title compound, the Cl—O bond lengths vary from 1.382 (12) Å to 1.437 (7) Å for Cl1O4 anion and from 1.374 (3) Å to 1.484 (4) Å for Cl2O4anion. The O—Cl—O angles range from 104.2 (14) ° to 119.3 (15) ° for the first anion and from 103.1 (2) °. to 118.4 (2) ° for the second one. These values clearly indicate that the coordination geometry of the Cl atom can be regarded as being a distorted tetrahedron. However, for Cl2O4 tetrahedron all the oxygen atoms are involved in hydrogen bonds, while only three oxygen atoms acts as acceptors of hydrogen bonds for the Cl1O4 tetrahedron.

Refinement

All H atoms were located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. The rotational disorder observed for one perchlorate anion (with Cl1) was modelized using two superimposed molecules with partial occupancies. The molecules were then refined with restraints on the Cl—O bonds, O—Cl—O angles and displacement parameters of the oxygen atoms

Figures

Fig. 1.
View of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. For the disordered perchlorate anion, only major part is shown.

Crystal data

C11H18N22+·2ClO4·H2OZ = 2
Mr = 395.19F(000) = 412.000
Triclinic, P1Dx = 1.566 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 8.6632 (6) ÅCell parameters from 13879 reflections
b = 10.0197 (8) Åθ = 3.5–32.9°
c = 10.8831 (7) ŵ = 0.44 mm1
α = 70.184 (7)°T = 293 K
β = 83.946 (6)°Plate, colourless
γ = 70.560 (7)°0.53 × 0.40 × 0.25 mm
V = 838.05 (12) Å3

Data collection

Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer5885 independent reflections
Radiation source: Enhance (Mo) X-ray Source3882 reflections with I > 2σ(I)
graphiteRint = 0.045
Detector resolution: 10.4685 pixels mm-1θmax = 33.0°, θmin = 3.5°
ω/2\ scansh = −13→13
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2006)k = −15→15
Tmin = 0.832, Tmax = 0.907l = −15→16
32031 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.240w = 1/[σ2(Fo2) + (0.15P)2 + 0.05P] where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
5885 reflectionsΔρmax = 1.04 e Å3
255 parametersΔρmin = −0.88 e Å3
40 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.062 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N160.2509 (2)0.3896 (2)0.78548 (16)0.0377 (4)
H1610.15560.37210.78790.045*
N190.1505 (3)0.7088 (2)0.6477 (2)0.0507 (5)
H1910.24310.73110.63930.061*
H1920.07290.79390.60860.061*
C170.2348 (3)0.5002 (3)0.8544 (2)0.0419 (4)
H1710.20030.46030.94310.050*
H1720.34160.51140.85620.050*
C180.1106 (3)0.6496 (3)0.7878 (2)0.0490 (5)
H1810.10850.72160.82710.059*
H1820.00260.63930.79370.059*
C200.1645 (4)0.5982 (3)0.5795 (2)0.0560 (6)
H2010.19600.63490.49100.067*
H2020.05990.58020.58220.067*
C210.2923 (4)0.4523 (3)0.6457 (2)0.0502 (6)
H2110.39800.46670.64110.060*
H2120.30220.38050.60220.060*
C220.3782 (3)0.2403 (3)0.8511 (3)0.0480 (5)
H2210.39600.17690.79690.058*
H2220.47980.25880.85660.058*
C230.3262 (3)0.1631 (2)0.9849 (2)0.0423 (5)
C240.3844 (4)0.1675 (3)1.0962 (3)0.0563 (6)
H2410.45940.21831.08830.068*
C250.3348 (4)0.0959 (3)1.2180 (3)0.0658 (8)
H2510.37580.10101.29100.079*
C260.2275 (4)0.0170 (3)1.2299 (3)0.0629 (7)
H2610.1933−0.03091.31310.075*
C270.1682 (4)0.0116 (3)1.1200 (3)0.0606 (7)
H2710.0944−0.04261.12910.073*
C280.2175 (3)0.0838 (3)0.9975 (2)0.0496 (5)
H2810.18220.07630.92360.059*
Cl10.19840 (7)0.07672 (7)0.62088 (5)0.0459 (2)
O1A0.0878 (13)0.0586 (10)0.5438 (9)0.071 (2)0.66 (3)
O2A0.2349 (11)−0.0512 (9)0.7360 (6)0.0630 (17)0.66 (3)
O3A0.1333 (19)0.2126 (12)0.6492 (15)0.095 (4)0.66 (3)
O4A0.3513 (9)0.0646 (13)0.5527 (11)0.086 (3)0.66 (3)
O1B0.122 (3)0.082 (3)0.510 (2)0.101 (7)0.34 (3)
O2B0.190 (4)−0.047 (2)0.724 (2)0.105 (6)0.34 (3)
O3B0.099 (2)0.2007 (17)0.660 (2)0.064 (4)0.34 (3)
O4B0.3506 (16)0.098 (2)0.585 (2)0.080 (3)0.34 (3)
Cl2−0.23663 (8)0.44332 (8)0.79535 (8)0.0570 (2)
O5−0.2245 (5)0.5724 (5)0.6812 (5)0.1421 (15)
O6−0.3698 (4)0.5028 (5)0.8630 (4)0.1273 (13)
O7−0.2735 (4)0.3526 (4)0.7389 (3)0.0951 (9)
O8−0.0873 (3)0.3889 (4)0.8630 (3)0.0991 (10)
O90.4548 (3)−0.2670 (3)0.5678 (3)0.0757 (7)
H910.4625−0.18740.51940.114*
H920.5408−0.32000.60720.114*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N160.0336 (8)0.0422 (9)0.0420 (9)−0.0174 (7)0.0030 (7)−0.0149 (7)
N190.0463 (11)0.0441 (10)0.0544 (11)−0.0149 (8)−0.0041 (9)−0.0050 (8)
C170.0433 (11)0.0430 (10)0.0421 (10)−0.0128 (9)−0.0001 (8)−0.0181 (9)
C180.0464 (12)0.0436 (11)0.0537 (12)−0.0111 (9)0.0049 (10)−0.0162 (10)
C200.0661 (17)0.0639 (15)0.0410 (11)−0.0303 (13)−0.0058 (11)−0.0096 (10)
C210.0606 (15)0.0569 (14)0.0429 (11)−0.0285 (12)0.0128 (10)−0.0222 (10)
C220.0369 (10)0.0437 (11)0.0629 (14)−0.0112 (9)0.0065 (10)−0.0200 (10)
C230.0362 (10)0.0365 (9)0.0527 (11)−0.0076 (8)−0.0031 (9)−0.0154 (8)
C240.0560 (14)0.0472 (12)0.0656 (15)−0.0145 (11)−0.0176 (12)−0.0147 (11)
C250.077 (2)0.0540 (15)0.0563 (15)−0.0025 (14)−0.0229 (14)−0.0163 (12)
C260.0640 (17)0.0517 (14)0.0544 (14)−0.0049 (12)0.0031 (12)−0.0081 (11)
C270.0546 (15)0.0554 (14)0.0694 (17)−0.0229 (12)0.0045 (13)−0.0132 (13)
C280.0476 (12)0.0539 (13)0.0515 (12)−0.0201 (10)−0.0020 (10)−0.0177 (10)
Cl10.0433 (3)0.0519 (3)0.0484 (3)−0.0204 (2)−0.0019 (2)−0.0177 (2)
O1A0.079 (4)0.062 (3)0.078 (3)−0.032 (3)−0.033 (3)−0.010 (3)
O2A0.073 (4)0.065 (3)0.044 (2)−0.030 (2)−0.007 (2)0.0004 (17)
O3A0.123 (8)0.077 (4)0.112 (6)−0.038 (4)−0.016 (5)−0.050 (4)
O4A0.074 (3)0.085 (5)0.088 (5)−0.039 (3)0.015 (3)−0.005 (3)
O1B0.088 (10)0.134 (16)0.104 (11)−0.017 (9)−0.025 (9)−0.078 (10)
O2B0.130 (15)0.093 (10)0.125 (12)−0.088 (11)0.070 (9)−0.047 (8)
O3B0.060 (6)0.054 (5)0.071 (6)0.003 (5)−0.005 (4)−0.029 (5)
O4B0.060 (5)0.094 (7)0.116 (9)−0.047 (5)0.029 (5)−0.057 (7)
Cl20.0410 (3)0.0587 (4)0.0838 (5)−0.0185 (3)−0.0003 (3)−0.0358 (3)
O50.122 (3)0.127 (3)0.160 (3)−0.076 (2)−0.022 (2)0.018 (2)
O60.0690 (18)0.192 (3)0.159 (3)−0.029 (2)0.0164 (18)−0.120 (3)
O70.111 (2)0.112 (2)0.1031 (19)−0.0633 (19)0.0164 (17)−0.0613 (18)
O80.0527 (14)0.133 (3)0.103 (2)−0.0300 (15)−0.0070 (13)−0.0256 (19)
O90.0635 (14)0.0607 (12)0.1013 (17)−0.0305 (11)0.0107 (12)−0.0167 (12)

Geometric parameters (Å, °)

N16—C211.491 (3)C24—C251.377 (4)
N16—C171.499 (3)C24—H2410.9313
N16—C221.519 (3)C25—C261.379 (5)
N16—H1610.8954C25—H2510.9269
N19—C181.486 (3)C26—C271.374 (5)
N19—C201.498 (4)C26—H2610.9388
N19—H1910.8898C27—C281.384 (4)
N19—H1920.8904C27—H2710.9459
C17—C181.510 (3)C28—H2810.9242
C17—H1710.9685Cl1—O2B1.382 (12)
C17—H1720.9713Cl1—O4B1.398 (11)
C18—H1810.9500Cl1—O1B1.409 (12)
C18—H1820.9681Cl1—O3A1.416 (8)
C20—C211.503 (4)Cl1—O2A1.427 (5)
C20—H2010.9532Cl1—O3B1.430 (10)
C20—H2020.9768Cl1—O1A1.430 (6)
C21—H2110.9671Cl1—O4A1.437 (7)
C21—H2120.9645Cl2—O61.374 (3)
C22—C231.500 (3)Cl2—O71.386 (3)
C22—H2210.9721Cl2—O81.405 (3)
C22—H2220.9695Cl2—O51.484 (4)
C23—C241.380 (3)O9—H910.8131
C23—C281.390 (3)O9—H920.8189
C21—N16—C17109.70 (17)N16—C22—H222108.0
C21—N16—C22110.81 (18)H221—C22—H222108.4
C17—N16—C22111.48 (17)C24—C23—C28118.9 (2)
C21—N16—H161107.9C24—C23—C22121.7 (2)
C17—N16—H161109.9C28—C23—C22119.3 (2)
C22—N16—H161107.0C25—C24—C23120.8 (3)
C18—N19—C20110.79 (19)C25—C24—H241120.0
C18—N19—H191110.7C23—C24—H241119.2
C20—N19—H191110.0C24—C25—C26120.0 (3)
C18—N19—H192110.1C24—C25—H251118.8
C20—N19—H192109.1C26—C25—H251121.1
H191—N19—H192106.1C27—C26—C25119.9 (3)
N16—C17—C18111.57 (19)C27—C26—H261120.3
N16—C17—H171108.2C25—C26—H261119.7
C18—C17—H171109.2C26—C27—C28120.1 (3)
N16—C17—H172108.2C26—C27—H271119.3
C18—C17—H172110.4C28—C27—H271120.5
H171—C17—H172109.2C27—C28—C23120.2 (2)
N19—C18—C17111.1 (2)C27—C28—H281120.4
N19—C18—H181107.3C23—C28—H281119.4
C17—C18—H181111.0O2B—Cl1—O4B119.3 (15)
N19—C18—H182108.7O2B—Cl1—O1B109.0 (11)
C17—C18—H182109.9O4B—Cl1—O1B109.0 (12)
H181—C18—H182108.7O3A—Cl1—O2A112.5 (8)
N19—C20—C21110.0 (2)O2B—Cl1—O3B104.2 (14)
N19—C20—H201110.1O4B—Cl1—O3B107.6 (11)
C21—C20—H201108.4O1B—Cl1—O3B107.0 (13)
N19—C20—H202110.0O3A—Cl1—O1A111.9 (7)
C21—C20—H202108.6O2A—Cl1—O1A107.1 (4)
H201—C20—H202109.7O3A—Cl1—O4A112.7 (6)
N16—C21—C20111.0 (2)O2A—Cl1—O4A104.5 (5)
N16—C21—H211109.0O1A—Cl1—O4A107.8 (6)
C20—C21—H211110.0O6—Cl2—O7109.7 (2)
N16—C21—H212109.1O6—Cl2—O8114.0 (2)
C20—C21—H212110.5O7—Cl2—O8118.4 (2)
H211—C21—H212107.1O6—Cl2—O5104.5 (3)
C23—C22—N16111.90 (18)O7—Cl2—O5103.1 (2)
C23—C22—H221109.6O8—Cl2—O5105.4 (2)
N16—C22—H221108.8H91—O9—H92111.3
C23—C22—H222110.1

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O9—H91···O4Ai0.812.272.942 (11)141
O9—H92···O5ii0.822.062.869 (6)170
N16—H161···O80.902.152.964 (3)151
N19—H191···O9iii0.891.922.750 (4)155
N19—H192···O1Aiv0.892.082.907 (10)154
C17—H172···O6v0.972.483.446 (5)172
C20—H201···O7iv0.952.493.406 (4)160
C21—H212···O3A0.962.483.130 (15)125

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1, y−1, z; (iii) x, y+1, z; (iv) −x, −y+1, −z+1; (v) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2717).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Antolini, L., Menabue, L., Pellacani, G. C., Monica, S. & Giuseppe, M. (1982). Inorg. Chim. Acta, 58, 193–200.
  • Czarnecki, P., Nawrocik, W., Pajaxk, Z. & Nawrocik, J. (1994). J. Phys. Condens. Matter, 6, 4955–4960.
  • Czupinski, O., Bator, G., Ciunik, Z., Jakubas, R., Medycki, W. & Wiergiel, J. S. (2002). J. Phys. Condens. Matter, 14, 8497–8512.
  • Czupinski, O., Wojtas, M., Zaleski, J., Jakubas, R. & Medycki, W. (2006). J. Phys. Condens. Matter, 88, 3307–3324.
  • Oxford Diffraction (2006). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, England.
  • Place, H. & Willett, R. D. (1988). Acta Cryst. C44, 34–38.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography