PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1801.
Published online 2010 June 26. doi:  10.1107/S160053681002266X
PMCID: PMC3006778

3-Methyl­quinoxaline-2-carb­oxy­lic acid 4-oxide monohydrate

Abstract

In the crystal structure of the title compound, C10H8N2O3·H2O, mol­ecules are linked via inter­molecular O—H(...)O and O—H(...)N hydrogen bonds into a two-dimensional network.

Related literature

For the synthesis of the starting material, see: Robertson & Kasublck (1973 [triangle]). For the synthesis of the title compound, see: Dirlam & McFarland (1977 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1801-scheme1.jpg

Experimental

Crystal data

  • C10H8N2O3·H2O
  • M r = 222.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1801-efi1.jpg
  • a = 6.0526 (13) Å
  • b = 18.068 (4) Å
  • c = 8.9195 (19) Å
  • β = 98.520 (15)°
  • V = 964.7 (4) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 1.02 mm−1
  • T = 173 K
  • 0.20 × 0.20 × 0.04 mm

Data collection

  • Rigaku R-AXIS RAPID IP area-detector diffractometer
  • Absorption correction: numerical (ABSCOR; Higashi, 1995 [triangle]) T min = 0.822, T max = 0.960
  • 6140 measured reflections
  • 1568 independent reflections
  • 900 reflections with I > 2σ(I)
  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.098
  • wR(F 2) = 0.256
  • S = 1.10
  • 1568 reflections
  • 154 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002266X/lh5056sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002266X/lh5056Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the 973 Fund and the Ministry of Science and Technology, China (grant No. 2009CB118801). We acknowledge Dr Liang Tongling for collecting the data at the Analysis and Testing Center, Institute of Chemistry, Academy of Science, Beijing.

supplementary crystallographic information

Comment

The molecular structure of the title compound is shown in Fig. 1. In the crystal structure, molecules are linked via intermolecular O-H···O hydrogen bonds into a two-dimensional network.

Experimental

Following the procedure of Dirlam & McFarland (1977) ethyl-3-methyl-2-quinoxalinecarboxylate-1,4-dioxide (2.0 g, 8 mmol) (Robertson & Kasublck, 1973) was dissolved in 1-propanol (20 ml), trimethyl phosphate (2.0 g, 16 mmol) was added dropwise to the solution. The reaction mixture was heated under reflux for 2.5 h, and evaporated to dryness. The residue was recrystallized from ether-hexane (1:1) to yeild 1.6 g (80%) ethyl 2-methyl-3-quinoxalinecarboxylate-1-oxide. Ethyl 2-methyl-3-quinoxalinecarboxylate-1-oxide (5 g, 22 mmol) was suspended in aqueous 0.5M sodium hydroxide solution (50 mL), and stirred for 2 h. Then used concentrated hydrochloric acid to adjust the PH=2. The white solid was collected and recrystallized from water to give 4.0 g (80%) of the the title compound.

Refinement

All H atoms (except for those bonded to the solvent water) were placed in calculated positions C-H = 0.95-0.98Å; O-H = 0.86Å and refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl,O). The H atoms of the solvent water molecule were located in a difference Fourier and there positions were refined with restraints and with Uiso(H) = 1.5Ueq(O).

The crystals of the title compound were of low quality and the data used has resulted in a crystal structure which has lower than normal precision. The precision of the data however is adequate to describe the nature of the hydrogen bonding.

Figures

Fig. 1.
The molecular structure of the title compound, showing the labelling scheme. Displacement ellipsoids are drawn at the 30% probability level for all non-H atoms.
Fig. 2.
Part of the crystal structure of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H8N2O3·H2OF(000) = 464
Mr = 222.20Dx = 1.530 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54186 Å
Hall symbol: -P 2ybcCell parameters from 426 reflections
a = 6.0526 (13) Åθ = 3.1–68.1°
b = 18.068 (4) ŵ = 1.02 mm1
c = 8.9195 (19) ÅT = 173 K
β = 98.520 (15)°Plate, yellow
V = 964.7 (4) Å30.20 × 0.20 × 0.04 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer1568 independent reflections
Radiation source: fine-focus sealed tube900 reflections with I > 2σ(I)
graphiteRint = 0.077
ω scans at fixed χ = 45°θmax = 63.7°, θmin = 4.9°
Absorption correction: numerical (ABSCOR; Higashi, 1995)h = −7→7
Tmin = 0.822, Tmax = 0.960k = −20→20
6140 measured reflectionsl = −10→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.098H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.256w = 1/[σ2(Fo2) + (0.1186P)2 + 0.0706P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1568 reflectionsΔρmax = 0.38 e Å3
154 parametersΔρmin = −0.31 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1W0.2035 (6)0.6094 (2)0.4980 (5)0.0458 (12)
O10.6172 (6)0.2378 (2)0.1107 (4)0.0546 (12)
O20.3088 (6)0.4949 (2)0.2089 (5)0.0614 (13)
O30.2260 (7)0.4704 (2)0.4389 (4)0.0532 (12)
H30.20180.51620.44010.080*
N10.4745 (7)0.2663 (3)0.1891 (5)0.0393 (12)
N20.1661 (7)0.3286 (2)0.3563 (5)0.0389 (12)
C10.1772 (8)0.2529 (3)0.3378 (6)0.0403 (14)
C20.0313 (9)0.2070 (3)0.4034 (6)0.0461 (15)
H2−0.07320.22800.46090.055*
C30.0398 (9)0.1315 (3)0.3845 (6)0.0474 (16)
H3A−0.06040.10040.42770.057*
C40.1961 (9)0.1006 (3)0.3014 (6)0.0490 (16)
H40.20120.04830.29000.059*
C50.3405 (9)0.1436 (3)0.2369 (6)0.0451 (16)
H50.44570.12190.18100.054*
C60.3311 (8)0.2207 (3)0.2547 (6)0.0387 (14)
C70.4655 (9)0.3408 (3)0.2072 (6)0.0402 (15)
C80.3058 (9)0.3687 (3)0.2920 (6)0.0383 (14)
C90.6295 (9)0.3835 (3)0.1352 (6)0.0482 (16)
H9B0.77880.36250.16470.072*
H9C0.62870.43520.16840.072*
H9A0.58960.38120.02470.072*
C100.2818 (9)0.4516 (3)0.3070 (7)0.0434 (15)
H1WB0.261 (8)0.643 (2)0.450 (6)0.065*
H1WA0.080 (5)0.626 (3)0.522 (6)0.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1W0.041 (2)0.044 (3)0.056 (3)−0.003 (2)0.0210 (19)−0.003 (2)
O10.049 (2)0.054 (3)0.065 (3)0.007 (2)0.021 (2)−0.005 (2)
O20.081 (3)0.050 (3)0.059 (3)0.009 (2)0.030 (2)0.008 (2)
O30.065 (3)0.043 (3)0.056 (3)0.004 (2)0.021 (2)−0.002 (2)
N10.032 (2)0.052 (3)0.037 (3)0.005 (2)0.016 (2)−0.004 (2)
N20.034 (2)0.040 (3)0.045 (3)0.001 (2)0.013 (2)−0.006 (2)
C10.031 (3)0.043 (4)0.048 (3)0.004 (3)0.010 (3)−0.004 (3)
C20.044 (3)0.051 (4)0.045 (3)−0.005 (3)0.010 (3)−0.007 (3)
C30.045 (4)0.046 (4)0.056 (4)−0.011 (3)0.021 (3)−0.008 (3)
C40.050 (4)0.040 (4)0.060 (4)0.004 (3)0.018 (3)−0.003 (3)
C50.037 (3)0.048 (4)0.053 (4)0.006 (3)0.018 (3)−0.004 (3)
C60.037 (3)0.044 (4)0.036 (3)0.000 (3)0.012 (3)−0.002 (3)
C70.033 (3)0.049 (4)0.040 (3)0.004 (3)0.008 (2)−0.003 (3)
C80.034 (3)0.046 (4)0.036 (3)0.004 (3)0.008 (2)−0.002 (3)
C90.045 (4)0.047 (4)0.056 (4)0.003 (3)0.016 (3)−0.002 (3)
C100.038 (3)0.047 (4)0.048 (4)0.000 (3)0.015 (3)−0.006 (3)

Geometric parameters (Å, °)

O1W—H1WB0.85 (4)C2—H20.9500
O1W—H1WA0.86 (4)C3—C41.401 (7)
O1—N11.296 (5)C3—H3A0.9500
O2—C101.202 (6)C4—C51.359 (7)
O3—C101.316 (6)C4—H40.9500
O3—H30.8400C5—C61.404 (7)
N1—C71.357 (7)C5—H50.9500
N1—C61.388 (6)C7—C81.406 (7)
N2—C81.309 (6)C7—C91.477 (7)
N2—C11.380 (6)C8—C101.514 (8)
C1—C61.401 (6)C9—H9B0.9800
C1—C21.401 (7)C9—H9C0.9800
C2—C31.377 (6)C9—H9A0.9800
H1WB—O1W—H1WA108 (4)C6—C5—H5120.6
C10—O3—H3109.5N1—C6—C1118.8 (5)
O1—N1—C7120.0 (5)N1—C6—C5120.3 (5)
O1—N1—C6120.0 (5)C1—C6—C5120.9 (5)
C7—N1—C6120.1 (4)N1—C7—C8117.5 (5)
C8—N2—C1116.8 (4)N1—C7—C9115.2 (5)
N2—C1—C6121.6 (5)C8—C7—C9127.3 (5)
N2—C1—C2119.4 (5)N2—C8—C7125.2 (5)
C6—C1—C2119.0 (5)N2—C8—C10115.6 (5)
C3—C2—C1119.9 (5)C7—C8—C10119.0 (5)
C3—C2—H2120.1C7—C9—H9B109.5
C1—C2—H2120.1C7—C9—H9C109.5
C2—C3—C4120.0 (5)H9B—C9—H9C109.5
C2—C3—H3A120.0C7—C9—H9A109.5
C4—C3—H3A120.0H9B—C9—H9A109.5
C5—C4—C3121.5 (5)H9C—C9—H9A109.5
C5—C4—H4119.3O2—C10—O3124.3 (6)
C3—C4—H4119.3O2—C10—C8123.7 (5)
C4—C5—C6118.7 (5)O3—C10—C8112.0 (5)
C4—C5—H5120.6
C8—N2—C1—C60.2 (7)C4—C5—C6—C10.4 (8)
C8—N2—C1—C2−179.8 (5)O1—N1—C7—C8179.4 (4)
N2—C1—C2—C3179.4 (4)C6—N1—C7—C8−0.7 (7)
C6—C1—C2—C3−0.6 (8)O1—N1—C7—C9−1.3 (7)
C1—C2—C3—C40.9 (8)C6—N1—C7—C9178.7 (4)
C2—C3—C4—C5−0.6 (8)C1—N2—C8—C7−0.4 (8)
C3—C4—C5—C60.0 (8)C1—N2—C8—C10176.9 (4)
O1—N1—C6—C1−179.5 (4)N1—C7—C8—N20.6 (8)
C7—N1—C6—C10.6 (7)C9—C7—C8—N2−178.7 (5)
O1—N1—C6—C50.2 (7)N1—C7—C8—C10−176.5 (4)
C7—N1—C6—C5−179.7 (4)C9—C7—C8—C104.2 (8)
N2—C1—C6—N1−0.3 (7)N2—C8—C10—O2−143.8 (5)
C2—C1—C6—N1179.6 (5)C7—C8—C10—O233.6 (8)
N2—C1—C6—C5180.0 (5)N2—C8—C10—O335.6 (6)
C2—C1—C6—C5−0.1 (8)C7—C8—C10—O3−147.0 (5)
C4—C5—C6—N1−179.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O1i0.85 (4)1.97 (2)2.794 (5)164 (5)
O1W—H1WA···N2ii0.86 (4)2.14 (2)2.968 (5)163 (5)
O3—H3···O1W0.841.762.574 (5)162

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5056).

References

  • Dirlam, J. P. & McFarland, J. W. (1977). J. Org. Chem.42, 1360–1364.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2001). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Robertson, R. L. & Kasublck, A. V. (1973). US Patent No. 3 767 657.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography