PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1628.
Published online 2010 June 16. doi:  10.1107/S1600536810021860
PMCID: PMC3006777

4-Acetyl­pyridinium iodide

Abstract

In the title compound, C7H8NO+·I, N—H(...)I hydrogen bonding and π–π stacking inter­actions [centroid–centroid distance = 5.578 (4) Å] stabilize the structure.

Related literature

For background to phase transition materials, see: Li et al. (2008 [triangle]); Zhang et al. (2009 [triangle]). For 4-acetyl­pyridine as a ligand in coordination compounds, see: Steffen & Palenik (1977 [triangle]); Pang et al. (1994 [triangle]). For other structures involving 4-acetyl­pyridine, see: Fu (2009a [triangle],b [triangle]); Majerz et al. (1991 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1628-scheme1.jpg

Experimental

Crystal data

  • C7H8NO+·I
  • M r = 249.04
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1628-efi1.jpg
  • a = 8.5144 (17) Å
  • b = 5.0926 (10) Å
  • c = 21.714 (6) Å
  • β = 111.37 (3)°
  • V = 876.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.59 mm−1
  • T = 298 K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.286, T max = 0.488
  • 8420 measured reflections
  • 2006 independent reflections
  • 1805 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.124
  • S = 0.90
  • 2006 reflections
  • 91 parameters
  • H-atom parameters constrained
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.62 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021860/jh2163sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021860/jh2163Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the starter fund of Southeast University for financial support to purchase the diffractometer.

supplementary crystallographic information

Comment

As a continuation of our study of phase transition materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009), organic-inorganic hybrids, we studied the dielectric properties of the title compound, unfortunately, there was no distinct anomaly observed from 93 K to 350 K, (subliming above 388 K), suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range.In this article, the crystal structure of the title compound has been presented.

4-Acetylpyridine may be used as a ligand in coordination compounds e.g. with Zn (Steffen & Palenik, 1977) or Ni (Pang et al., 1994). The crystal structures of 4-acetylpyridine together with pentachlorophenol (Majerz et al. 1991) andinorganic acids are also known e.g. with sulfuric acid (Fu, 2009b) and perchloric acid (Fu, 2009a).

The asymmetric unit of the title compound is built up from an protonated 4-acetylpyridinium cation wherein the acetyl group deviates 28.0 (5)°from the plane formed by the non-hydrogen atoms of the pyridine ring and a I- anion (Fig. 1). The C1—C2—O1 bond angle and O1—C2—C3—C4 torsion angle are 122.6 (8)ånd 27.8 (9)°, respectively. N—H···I hydrogen bonding (N···I distance 3.456 (6) Å) and π-π stacking interaction with the adjacent interplanar spacing of 5.578 (4)Å make great contribution to the stability of the crystal structure.

Experimental

1.19 g(10 mmol) 4-acetylpyridine was firstly dissolved in 50 ml e thanol, to which hydroiodic acid aqueous solution(40%, w/w) was then added until the solution became acidic under stirring.Single crystals of (I) were prepared by slow evaporation at room temperature of the acidic solution after 3 days.

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C and N atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C),Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level, and all H atoms have been omitted for clarity.
Fig. 2.
A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.

Crystal data

C7H8NO+·IF(000) = 472
Mr = 249.04Dx = 1.887 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4122 reflections
a = 8.5144 (17) Åθ = 3.0–27.6°
b = 5.0926 (10) ŵ = 3.59 mm1
c = 21.714 (6) ÅT = 298 K
β = 111.37 (3)°Prism, colourless
V = 876.8 (3) Å30.40 × 0.30 × 0.20 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer2006 independent reflections
Radiation source: fine-focus sealed tube1805 reflections with I > 2σ(I)
graphiteRint = 0.039
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.8°
ω scansh = −11→11
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −6→6
Tmin = 0.286, Tmax = 0.488l = −28→27
8420 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 0.90w = 1/[σ2(Fo2) + (0.0645P)2 + 6.0704P] where P = (Fo2 + 2Fc2)/3
2006 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = −0.62 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.78163 (5)0.05660 (9)0.07248 (2)0.05081 (18)
O10.3686 (9)1.1056 (11)0.2117 (3)0.0769 (18)
N10.3294 (8)0.3813 (11)0.0580 (3)0.0531 (13)
H1A0.34050.27170.02970.064*
C20.2855 (10)0.9025 (15)0.2014 (3)0.0546 (16)
C70.1674 (9)0.5509 (14)0.1144 (3)0.0512 (15)
H7A0.06750.55310.12260.061*
C50.4569 (9)0.5415 (15)0.0887 (4)0.0552 (16)
H5A0.55490.53570.07920.066*
C60.1850 (9)0.3817 (13)0.0688 (4)0.0528 (16)
H6A0.09780.26860.04550.063*
C30.2973 (8)0.7194 (12)0.1488 (3)0.0412 (12)
C40.4428 (8)0.7145 (13)0.1342 (3)0.0478 (14)
H4A0.53070.82930.15560.057*
C10.1781 (13)0.832 (3)0.2385 (4)0.093 (3)
H1B0.18320.96830.26970.140*
H1C0.21710.67000.26170.140*
H1D0.06380.81110.20850.140*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.0462 (3)0.0495 (3)0.0573 (3)−0.00662 (19)0.01939 (19)−0.00989 (18)
O10.122 (5)0.044 (3)0.059 (3)−0.005 (3)0.026 (3)−0.008 (2)
N10.071 (4)0.041 (3)0.049 (3)0.000 (3)0.024 (3)−0.001 (2)
C20.062 (4)0.054 (4)0.042 (3)0.007 (3)0.012 (3)0.005 (3)
C70.044 (3)0.055 (4)0.056 (4)−0.002 (3)0.020 (3)0.004 (3)
C50.054 (4)0.057 (4)0.063 (4)0.001 (3)0.031 (3)0.005 (3)
C60.052 (4)0.039 (3)0.061 (4)−0.008 (3)0.013 (3)−0.002 (3)
C30.049 (3)0.036 (3)0.035 (3)0.003 (2)0.010 (2)0.006 (2)
C40.047 (3)0.045 (3)0.049 (3)−0.010 (3)0.014 (3)0.000 (3)
C10.094 (7)0.140 (10)0.057 (5)0.014 (7)0.040 (5)−0.003 (6)

Geometric parameters (Å, °)

O1—C21.227 (9)C5—C41.362 (10)
N1—C51.327 (9)C5—H5A0.9300
N1—C61.332 (10)C6—H6A0.9300
N1—H1A0.8600C3—C41.385 (9)
C2—C11.468 (11)C4—H4A0.9300
C2—C31.506 (9)C1—H1B0.9600
C7—C61.363 (10)C1—H1C0.9600
C7—C31.383 (9)C1—H1D0.9600
C7—H7A0.9300
C5—N1—C6123.3 (6)C7—C6—H6A120.6
C5—N1—H1A118.3C7—C3—C4118.1 (6)
C6—N1—H1A118.3C7—C3—C2122.1 (6)
O1—C2—C1122.6 (8)C4—C3—C2119.8 (6)
O1—C2—C3117.9 (7)C5—C4—C3120.0 (6)
C1—C2—C3119.5 (8)C5—C4—H4A120.0
C6—C7—C3120.4 (6)C3—C4—H4A120.0
C6—C7—H7A119.8C2—C1—H1B109.5
C3—C7—H7A119.8C2—C1—H1C109.5
N1—C5—C4119.3 (6)H1B—C1—H1C109.5
N1—C5—H5A120.3C2—C1—H1D109.5
C4—C5—H5A120.3H1B—C1—H1D109.5
N1—C6—C7118.8 (6)H1C—C1—H1D109.5
N1—C6—H6A120.6
C6—N1—C5—C40.8 (11)C1—C2—C3—C727.6 (10)
C5—N1—C6—C7−1.3 (11)O1—C2—C3—C427.8 (9)
C3—C7—C6—N10.2 (10)C1—C2—C3—C4−151.5 (7)
C6—C7—C3—C41.4 (10)N1—C5—C4—C30.9 (10)
C6—C7—C3—C2−177.8 (6)C7—C3—C4—C5−2.0 (9)
O1—C2—C3—C7−153.0 (7)C2—C3—C4—C5177.2 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···I1i0.862.673.456 (6)153

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2163).

References

  • Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  • Fu, X. (2009a). Acta Cryst. E65, o1804. [PMC free article] [PubMed]
  • Fu, X. (2009b). Acta Cryst. E65, o2385. [PMC free article] [PubMed]
  • Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem.11, 1959–1962.
  • Majerz, I., Malarski, Z. & Sawka-Dobrowolska, W. (1991). J. Mol. Struct.249, 109–116.
  • Pang, L., Whitehead, M. A., Bermardinelli, G. & Lucken, E. A. C. (1994). J. Chem. Crystallogr.24, 203–211.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem.16, 1119–1128.
  • Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc.131, 12544–12545. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography