PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1845.
Published online 2010 June 26. doi:  10.1107/S1600536810024475
PMCID: PMC3006776

2,2,4-Trimethyl-7-nitro-2,3-dihydro-1H-1,5-benzodiazepin-5-ium perchlorate

Abstract

In the title mol­ecular salt, C12H16N3O2 +·ClO4 , the nitro group is close to being coplanar with the benzene ring [dihedral angle = 8.1 (3)°]. The seven-membered ring has a maximum deviation of 0.502 (3) Å at the C atom between the dimethyl- and methyl-substituted C atoms. In the crystal, the components are linked into infinite sheets lying parallel to the bc plane by N—H(...)O and C—H(...)O hydrogen bonds. A short O(...)N contact of 2.896 (4) Å occurs within the sheets and a short O(...)O contact of 2.608 (4) Å occurs between the sheets.

Related literature

For general background and applications of benzimidazole derivatives, see: Landquist (1984 [triangle]); Insuasty et al. (2010 [triangle]); Balakrishna & Kaboudin (2001 [triangle]); Ballo et al. (2010 [triangle]). For the preparation of the title compound, see: Grech et al. (1994 [triangle]). For ring conformations, see Cremer & Pople (1975 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1845-scheme1.jpg

Experimental

Crystal data

  • C12H16N3O2 +·ClO4
  • M r = 333.73
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1845-efi1.jpg
  • a = 21.046 (7) Å
  • b = 11.818 (3) Å
  • c = 15.636 (6) Å
  • β = 132.176 (9)°
  • V = 2882.0 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 100 K
  • 0.30 × 0.17 × 0.08 mm

Data collection

  • Bruker APEXII DUO CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.915, T max = 0.976
  • 24582 measured reflections
  • 3323 independent reflections
  • 2816 reflections with I > 2σ(I)
  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.138
  • S = 1.05
  • 3323 reflections
  • 210 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.69 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024475/hb5507sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024475/hb5507Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SHM and RMG thank Universiti Sains Malaysia (USM) for the University Grant (1001/PTEKIND/8140152). HKF and CSY thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). CSY also thanks USM for the award of a USM Fellowship.

supplementary crystallographic information

Comment

Benzodiazepines are interesting compounds due to their wide range of biological activities (Landquist, 1984). Recently many methods have been employed for the synthesis of benzodiazepines derivatives (Insuasty et al., 2010; Balakrishna & Kaboudin, 2001; Ballo et al., 2010). Here we report the synthesis and the crystal structure of title compound.

The asymmetric unit of title compound (Fig. 1) consists of one the benzodiazepinium cation and one perchlorate anion. The nitro group is coplanar with the benzene ring with the dihedral angle of 8.1 (3)°. The seven-membered ring (N1/C1/C6/N2/C7–C9) have a maximum deviation of 0.502 (3) Å at atom C8. In the crystal structure, the molecules are linked into infinite two-dimensional planes parallel to bc plane by the intermolecular N—H···O, C—H···O hydrogen bonds (Table 1) and short O6···N3 interaction of 2.896 (4) Å. Short O2···O3 interaction of 2.608 (4) Å linked these planes into a three-dimensional framewrok (Fig. 2).

Experimental

A mixture of 4-nitro o-phenylenediamine (0.153 g m) and 4-hydroxy coumarin (0.162 g m) in molar ratio 1:1 was refluxed in a mixture of acetic acid-ethanol (1:1 v/v) for 3 h (Grech et al., 1994). The solid settled in the reaction mixture was filtered and crystallized from ethanol to furnish brownish plates of the unexpected title compound, (I) (55%, m.p. 458 K).

Refinement

The N-bound hydrogen atoms were located from the difference Fourier map and were refined freely. The rest of hydrogen atoms were positioned geometrically [C–H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). Rotating-group model was applied for methyl groups.

Figures

Fig. 1.
The molecular structure of (I) with 50% probability ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of (I), viewed down the c axis, showing the components linked into a 3-D network. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C12H16N3O2+·ClO4F(000) = 1392
Mr = 333.73Dx = 1.538 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7331 reflections
a = 21.046 (7) Åθ = 2.2–29.8°
b = 11.818 (3) ŵ = 0.30 mm1
c = 15.636 (6) ÅT = 100 K
β = 132.176 (9)°Plate, brown
V = 2882.0 (16) Å30.30 × 0.17 × 0.08 mm
Z = 8

Data collection

Bruker APEXII DUO CCD diffractometer3323 independent reflections
Radiation source: fine-focus sealed tube2816 reflections with I > 2σ(I)
graphiteRint = 0.066
[var phi] and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −27→27
Tmin = 0.915, Tmax = 0.976k = −15→15
24582 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0714P)2 + 7.0069P] where P = (Fo2 + 2Fc2)/3
3323 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = −0.68 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.15021 (3)0.71202 (4)0.49658 (4)0.01923 (16)
O10.13150 (11)0.68718 (14)0.56727 (14)0.0259 (4)
O20.19403 (11)0.82394 (13)0.52807 (14)0.0245 (4)
O30.21587 (10)0.62367 (14)0.52533 (14)0.0256 (4)
O40.07604 (10)0.70691 (14)0.37336 (13)0.0234 (4)
O50.08273 (11)1.21240 (13)0.25797 (14)0.0249 (4)
O60.09384 (11)1.07773 (14)0.36195 (13)0.0246 (4)
N10.11724 (12)0.79665 (15)0.04379 (16)0.0183 (4)
N20.10204 (12)0.72103 (15)0.21588 (15)0.0176 (4)
N30.08881 (11)1.11171 (16)0.28211 (15)0.0194 (4)
C10.10956 (12)0.86625 (17)0.10449 (16)0.0152 (4)
C20.10763 (13)0.98440 (18)0.08478 (17)0.0166 (4)
H2A0.11271.00790.03280.020*
C30.09866 (12)1.06450 (17)0.13882 (17)0.0166 (4)
H3A0.09671.14100.12320.020*
C40.09241 (12)1.02892 (18)0.21822 (17)0.0172 (4)
C50.09300 (13)0.91616 (18)0.24014 (17)0.0172 (4)
H5A0.08720.89450.29180.021*
C60.10220 (12)0.83451 (17)0.18541 (17)0.0155 (4)
C70.14051 (13)0.63366 (18)0.21973 (17)0.0180 (4)
C80.19130 (13)0.64237 (19)0.18564 (18)0.0191 (4)
H8A0.21840.57000.19910.023*
H8B0.23640.69780.23470.023*
C90.13798 (13)0.67632 (17)0.05830 (17)0.0165 (4)
C100.05645 (14)0.60604 (19)−0.02308 (18)0.0216 (4)
H10A0.02690.6260−0.10150.032*
H10B0.02000.6207−0.00770.032*
H10C0.07100.5271−0.01130.032*
C110.19389 (15)0.6604 (2)0.0295 (2)0.0234 (5)
H11A0.16270.6841−0.04850.035*
H11B0.20910.58210.03770.035*
H11C0.24500.70510.08130.035*
C120.13540 (15)0.52362 (18)0.26078 (19)0.0222 (4)
H12A0.09700.53050.27380.033*
H12B0.19140.50280.33150.033*
H12C0.11450.46650.20350.033*
H1N10.1130 (16)0.826 (2)−0.006 (2)0.016 (6)*
H1N20.0798 (19)0.715 (2)0.243 (3)0.030 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0193 (3)0.0214 (3)0.0170 (3)−0.00116 (18)0.0122 (2)−0.00003 (18)
O10.0328 (9)0.0283 (9)0.0249 (8)−0.0029 (7)0.0228 (8)0.0002 (7)
O20.0298 (8)0.0167 (8)0.0277 (8)−0.0057 (6)0.0195 (7)−0.0039 (6)
O30.0230 (8)0.0219 (8)0.0289 (9)0.0046 (6)0.0162 (7)0.0013 (7)
O40.0169 (7)0.0350 (9)0.0147 (8)−0.0018 (6)0.0091 (7)−0.0003 (6)
O50.0305 (9)0.0176 (8)0.0253 (8)0.0029 (6)0.0183 (7)0.0006 (6)
O60.0319 (9)0.0267 (8)0.0192 (8)0.0026 (7)0.0188 (7)0.0002 (6)
N10.0239 (9)0.0180 (9)0.0167 (9)0.0012 (7)0.0152 (8)0.0019 (7)
N20.0186 (8)0.0192 (9)0.0156 (8)−0.0018 (7)0.0118 (7)0.0008 (7)
N30.0185 (8)0.0213 (9)0.0169 (8)0.0015 (7)0.0113 (7)−0.0003 (7)
C10.0108 (8)0.0192 (10)0.0122 (9)−0.0005 (7)0.0064 (7)−0.0002 (7)
C20.0147 (9)0.0202 (10)0.0134 (9)−0.0019 (8)0.0088 (8)0.0006 (7)
C30.0132 (9)0.0174 (10)0.0136 (9)−0.0013 (7)0.0067 (8)0.0001 (7)
C40.0146 (9)0.0204 (10)0.0141 (9)0.0014 (8)0.0087 (8)−0.0008 (8)
C50.0144 (9)0.0234 (10)0.0127 (9)0.0004 (8)0.0086 (8)0.0012 (8)
C60.0128 (9)0.0179 (10)0.0138 (9)−0.0011 (7)0.0082 (8)0.0003 (7)
C70.0164 (9)0.0205 (10)0.0113 (9)−0.0025 (8)0.0069 (8)0.0003 (7)
C80.0159 (9)0.0220 (10)0.0172 (10)0.0016 (8)0.0102 (8)0.0027 (8)
C90.0162 (9)0.0164 (9)0.0174 (10)0.0013 (8)0.0115 (8)0.0018 (8)
C100.0209 (10)0.0231 (11)0.0182 (10)−0.0032 (8)0.0121 (9)−0.0019 (8)
C110.0254 (11)0.0241 (11)0.0289 (12)0.0026 (9)0.0215 (10)0.0029 (9)
C120.0278 (11)0.0181 (10)0.0207 (10)−0.0013 (9)0.0163 (9)0.0017 (8)

Geometric parameters (Å, °)

Cl1—O11.4310 (16)C4—C51.374 (3)
Cl1—O41.4538 (16)C5—C61.387 (3)
Cl1—O21.4941 (16)C5—H5A0.9300
Cl1—O31.5388 (17)C7—C81.484 (3)
O5—N31.229 (2)C7—C121.486 (3)
O6—N31.246 (2)C8—C91.544 (3)
N1—C11.345 (3)C8—H8A0.9700
N1—C91.460 (3)C8—H8B0.9700
N1—H1N10.79 (3)C9—C101.524 (3)
N2—C71.288 (3)C9—C111.528 (3)
N2—C61.424 (3)C10—H10A0.9600
N2—H1N20.81 (3)C10—H10B0.9600
N3—C41.436 (3)C10—H10C0.9600
C1—C61.425 (3)C11—H11A0.9600
C1—C21.425 (3)C11—H11B0.9600
C2—C31.364 (3)C11—H11C0.9600
C2—H2A0.9300C12—H12A0.9600
C3—C41.398 (3)C12—H12B0.9600
C3—H3A0.9300C12—H12C0.9600
O1—Cl1—O4114.06 (10)N2—C7—C8120.61 (19)
O1—Cl1—O2110.86 (10)N2—C7—C12119.75 (19)
O4—Cl1—O2110.46 (10)C8—C7—C12119.63 (19)
O1—Cl1—O3107.10 (10)C7—C8—C9113.96 (17)
O4—Cl1—O3108.27 (10)C7—C8—H8A108.8
O2—Cl1—O3105.65 (10)C9—C8—H8A108.8
C1—N1—C9130.62 (18)C7—C8—H8B108.8
C1—N1—H1N1115.8 (19)C9—C8—H8B108.8
C9—N1—H1N1113.4 (19)H8A—C8—H8B107.7
C7—N2—C6128.90 (19)N1—C9—C10110.47 (17)
C7—N2—H1N2118 (2)N1—C9—C11106.44 (17)
C6—N2—H1N2113 (2)C10—C9—C11110.21 (18)
O5—N3—O6122.75 (18)N1—C9—C8109.64 (17)
O5—N3—C4119.30 (18)C10—C9—C8111.79 (17)
O6—N3—C4117.94 (18)C11—C9—C8108.13 (17)
N1—C1—C6127.01 (19)C9—C10—H10A109.5
N1—C1—C2116.50 (18)C9—C10—H10B109.5
C6—C1—C2116.48 (18)H10A—C10—H10B109.5
C3—C2—C1122.82 (19)C9—C10—H10C109.5
C3—C2—H2A118.6H10A—C10—H10C109.5
C1—C2—H2A118.6H10B—C10—H10C109.5
C2—C3—C4118.43 (19)C9—C11—H11A109.5
C2—C3—H3A120.8C9—C11—H11B109.5
C4—C3—H3A120.8H11A—C11—H11B109.5
C5—C4—C3121.52 (19)C9—C11—H11C109.5
C5—C4—N3118.88 (18)H11A—C11—H11C109.5
C3—C4—N3119.55 (19)H11B—C11—H11C109.5
C4—C5—C6120.17 (19)C7—C12—H12A109.5
C4—C5—H5A119.9C7—C12—H12B109.5
C6—C5—H5A119.9H12A—C12—H12B109.5
C5—C6—N2114.60 (18)C7—C12—H12C109.5
C5—C6—C1120.55 (19)H12A—C12—H12C109.5
N2—C6—C1124.83 (18)H12B—C12—H12C109.5
C9—N1—C1—C6−14.5 (3)C7—N2—C6—C131.3 (3)
C9—N1—C1—C2166.30 (19)N1—C1—C6—C5−178.74 (19)
N1—C1—C2—C3178.87 (18)C2—C1—C6—C50.5 (3)
C6—C1—C2—C3−0.5 (3)N1—C1—C6—N20.2 (3)
C1—C2—C3—C41.0 (3)C2—C1—C6—N2179.44 (18)
C2—C3—C4—C5−1.6 (3)C6—N2—C7—C8−2.4 (3)
C2—C3—C4—N3175.77 (18)C6—N2—C7—C12176.47 (19)
O5—N3—C4—C5−175.37 (19)N2—C7—C8—C9−62.3 (3)
O6—N3—C4—C56.1 (3)C12—C7—C8—C9118.8 (2)
O5—N3—C4—C37.1 (3)C1—N1—C9—C1097.6 (2)
O6—N3—C4—C3−171.40 (18)C1—N1—C9—C11−142.8 (2)
C3—C4—C5—C61.7 (3)C1—N1—C9—C8−26.1 (3)
N3—C4—C5—C6−175.70 (18)C7—C8—C9—N174.8 (2)
C4—C5—C6—N2179.81 (18)C7—C8—C9—C10−48.0 (2)
C4—C5—C6—C1−1.2 (3)C7—C8—C9—C11−169.51 (18)
C7—N2—C6—C5−149.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···O6i0.80 (3)2.15 (3)2.941 (3)173 (3)
N2—H1N2···O40.82 (5)2.09 (4)2.864 (4)156 (4)
N2—H1N2···O4ii0.82 (5)2.46 (5)3.000 (4)124 (3)
C3—H3A···O1i0.932.513.373 (3)155
C11—H11A···O5i0.962.583.524 (3)169
C11—H11B···O3iii0.962.453.396 (3)168

Symmetry codes: (i) x, −y+2, z−1/2; (ii) −x, y, −z+1/2; (iii) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5507).

References

  • Balakrishna, M. S. & Kaboudin, B. (2001). Tetrahedron Lett 42, 1127–1129.
  • Ballo, D., Ahabchane, N. H., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1277. [PMC free article] [PubMed]
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Grech, O., Sakellariou, R. & Speziale, V. (1994). J. Heterocycl. Chem.31, 509–511.
  • Insuasty, B., Garcia, A., Abonia, R., Nogueras, M. & Cobo, J. (2010). Molbank, 2010, M664.
  • Landquist, J. K. (1984). Comprehensive Heterocyclic Chemistry, edited by A. R. Katritzky & C. W. Rees, p. 166. Oxford: Pergamon.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography