PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1702.
Published online 2010 June 18. doi:  10.1107/S1600536810022968
PMCID: PMC3006774

4-Chloro-N-(3-chloro­phen­yl)-2-methyl­benzene­sulfonamide

Abstract

In the title compound, C13H11Cl2NO2S, the conformation of the N—H bond in the C—SO2—NH—C segment is anti to the meta-Cl atom on the aniline ring and syn to the ortho-methyl group on the sulfonyl­benzene ring. Furthermore, the torsion angle of the C—SO2—NH—C segment in the mol­ecule is 80.1 (3)°. The two benzene rings are tilted relative to each other by 70.9 (1)°. In the crystal, pairs of inter­molecular N—H(...)O hydrogen bonds link the mol­ecules via inversion-related dimers into infinite column-like chains.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006 [triangle]). For our studies of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2008 [triangle], 2009a [triangle],b [triangle]). For related structures, see: Gelbrich et al. (2007 [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1702-scheme1.jpg

Experimental

Crystal data

  • C13H11Cl2NO2S
  • M r = 316.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1702-efi1.jpg
  • a = 7.9757 (7) Å
  • b = 11.3472 (8) Å
  • c = 15.569 (1) Å
  • β = 91.490 (8)°
  • V = 1408.55 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.61 mm−1
  • T = 299 K
  • 0.36 × 0.28 × 0.04 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.812, T max = 0.976
  • 5849 measured reflections
  • 2866 independent reflections
  • 1853 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.161
  • S = 1.04
  • 2866 reflections
  • 176 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022968/vm2031sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022968/vm2031Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008; Gowda et al., 2009a,b), in the present work, the structure of 4-chloro-2-methyl-N-(3-chlorophenyl)benzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—H bond on the C—SO2—NH—C segment is anti to the meta-Cl on the aniline ring and syn to the ortho-methyl group in the sulfonyl benzene ring.

The torsion angle of the segment C—SO2—NH—C in (I) is 80.1 (3)°, compared to the values of -61.9 (4)° and 69.7 (4)° in the two independent molecules of 4-chloro-2-methyl-N-(phenyl)-benzenesulfonamide(II) (Gowda et al., 2009a), 74.8 (4)° in 4-chloro-2-methyl-N-(2-chlorophenyl)-benzenesulfonamide (III) (Gowda et al., 2009b) and -60.1 (2)° in N-(3-chlorophenyl)-benzenesulfonamide (IV)(Gowda et al., 2008).

The sulfonyl and the aniline benzene rings in (I) are tilted relative to each other by 70.9 (1)°, compared to the values of 86.6 (2)° and 83.0 (2)° in the two independent molecules of (II), 45.5 (2)° in (III) and 65.4 (1)° in (IV).

The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal structure, pairs of intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into inversion-related dimers, which are further linked into infinite column like chains through C—H···π and C—Cl···π interactions. Part of the crystal structure is shown in Fig. 2.

Experimental

The solution of m-chlorotoluene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2-methyl-4-chlorobenzenesulfonylchloride was treated with 3-chloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid 4-chloro-2-methyl-N- (3-chlorophenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006).

The plate like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C13H11Cl2NO2SF(000) = 648
Mr = 316.19Dx = 1.491 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2107 reflections
a = 7.9757 (7) Åθ = 2.6–27.8°
b = 11.3472 (8) ŵ = 0.61 mm1
c = 15.569 (1) ÅT = 299 K
β = 91.490 (8)°Plate, colourless
V = 1408.55 (18) Å30.36 × 0.28 × 0.04 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2866 independent reflections
Radiation source: fine-focus sealed tube1853 reflections with I > 2σ(I)
graphiteRint = 0.017
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −9→7
Tmin = 0.812, Tmax = 0.976k = −14→14
5849 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0763P)2 + 0.8836P] where P = (Fo2 + 2Fc2)/3
2866 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.43 e Å3
1 restraintΔρmin = −0.52 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3431 (4)0.2031 (3)0.66150 (19)0.0451 (7)
C20.3719 (5)0.2761 (3)0.7319 (2)0.0571 (9)
H20.47930.28180.75630.069*
C30.2436 (6)0.3398 (3)0.7657 (2)0.0642 (10)
H30.26380.38970.81220.077*
C40.0858 (5)0.3293 (3)0.7305 (2)0.0617 (10)
C50.0557 (5)0.2571 (3)0.6608 (3)0.0630 (10)
H5−0.05300.25070.63830.076*
C60.1829 (4)0.1936 (3)0.6234 (2)0.0508 (8)
C70.6346 (4)0.2765 (3)0.5046 (2)0.0486 (8)
C80.6426 (4)0.3741 (3)0.5575 (2)0.0543 (8)
H80.59400.37290.61110.065*
C90.7240 (5)0.4732 (3)0.5292 (2)0.0585 (9)
C100.7951 (6)0.4781 (4)0.4506 (3)0.0809 (13)
H100.84920.54590.43250.097*
C110.7847 (6)0.3796 (4)0.3983 (3)0.0887 (15)
H110.83190.38150.34440.106*
C120.7061 (5)0.2795 (4)0.4249 (2)0.0641 (10)
H120.70070.21370.38930.077*
C130.1457 (5)0.1168 (3)0.5412 (2)0.0595 (10)
H13A0.18070.03710.55190.071*
H13B0.20600.14810.49370.071*
H13C0.02760.11820.52760.071*
N10.5495 (4)0.1719 (3)0.5270 (2)0.0640 (9)
H1N0.539 (5)0.120 (3)0.488 (2)0.077*
O10.6571 (3)0.1510 (2)0.67778 (17)0.0697 (7)
O20.4690 (3)0.0031 (2)0.61100 (16)0.0660 (7)
Cl1−0.0771 (2)0.41129 (13)0.77137 (10)0.1162 (6)
Cl20.73479 (16)0.59549 (9)0.59594 (8)0.0858 (4)
S10.51639 (11)0.12421 (7)0.62307 (6)0.0533 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0512 (19)0.0407 (16)0.0432 (17)−0.0108 (14)0.0010 (14)0.0041 (13)
C20.062 (2)0.061 (2)0.0488 (19)−0.0148 (18)−0.0021 (16)−0.0027 (17)
C30.087 (3)0.057 (2)0.049 (2)−0.011 (2)0.012 (2)−0.0088 (17)
C40.070 (3)0.048 (2)0.068 (2)−0.0030 (18)0.023 (2)0.0086 (18)
C50.049 (2)0.058 (2)0.082 (3)−0.0104 (18)0.0034 (19)0.012 (2)
C60.054 (2)0.0417 (18)0.057 (2)−0.0135 (15)0.0006 (16)0.0043 (15)
C70.0451 (18)0.0475 (18)0.0533 (19)−0.0033 (15)0.0043 (15)0.0037 (15)
C80.055 (2)0.050 (2)0.058 (2)−0.0003 (16)0.0070 (16)0.0008 (16)
C90.059 (2)0.0453 (19)0.070 (2)−0.0021 (17)−0.0067 (18)0.0079 (17)
C100.098 (3)0.072 (3)0.073 (3)−0.031 (2)0.002 (2)0.020 (2)
C110.105 (4)0.100 (4)0.061 (3)−0.034 (3)0.021 (2)0.010 (3)
C120.069 (2)0.068 (2)0.055 (2)−0.010 (2)0.0066 (19)−0.0050 (18)
C130.056 (2)0.058 (2)0.063 (2)−0.0245 (17)−0.0249 (17)−0.0032 (17)
N10.084 (2)0.0510 (18)0.0578 (19)−0.0174 (16)0.0191 (16)−0.0079 (14)
O10.0540 (15)0.0750 (18)0.0794 (18)−0.0031 (13)−0.0104 (13)0.0085 (14)
O20.0826 (19)0.0420 (13)0.0738 (17)−0.0038 (12)0.0094 (14)0.0032 (11)
Cl10.1189 (12)0.0990 (10)0.1336 (12)0.0235 (8)0.0566 (10)0.0030 (8)
Cl20.1005 (9)0.0488 (6)0.1077 (9)−0.0067 (5)−0.0032 (7)−0.0073 (5)
S10.0557 (5)0.0457 (5)0.0584 (5)−0.0046 (4)0.0028 (4)0.0040 (4)

Geometric parameters (Å, °)

C1—C21.388 (4)C8—H80.9300
C1—C61.399 (5)C9—C101.362 (6)
C1—S11.764 (3)C9—Cl21.734 (4)
C2—C31.369 (5)C10—C111.384 (6)
C2—H20.9300C10—H100.9300
C3—C41.365 (5)C11—C121.366 (5)
C3—H30.9300C11—H110.9300
C4—C51.375 (5)C12—H120.9300
C4—Cl11.733 (4)C13—H13A0.9600
C5—C61.386 (5)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—C131.571 (5)N1—S11.619 (3)
C7—C121.380 (5)N1—H1N0.850 (18)
C7—C81.380 (5)O1—S11.424 (3)
C7—N11.416 (4)O2—S11.436 (2)
C8—C91.377 (5)
C2—C1—C6120.7 (3)C8—C9—Cl2118.5 (3)
C2—C1—S1117.1 (3)C9—C10—C11118.4 (4)
C6—C1—S1122.1 (2)C9—C10—H10120.8
C3—C2—C1120.6 (3)C11—C10—H10120.8
C3—C2—H2119.7C12—C11—C10121.0 (4)
C1—C2—H2119.7C12—C11—H11119.5
C4—C3—C2119.3 (3)C10—C11—H11119.5
C4—C3—H3120.3C11—C12—C7119.7 (4)
C2—C3—H3120.3C11—C12—H12120.1
C3—C4—C5120.6 (4)C7—C12—H12120.1
C3—C4—Cl1119.9 (3)C6—C13—H13A109.5
C5—C4—Cl1119.5 (3)C6—C13—H13B109.5
C4—C5—C6121.8 (4)H13A—C13—H13B109.5
C4—C5—H5119.1C6—C13—H13C109.5
C6—C5—H5119.1H13A—C13—H13C109.5
C5—C6—C1116.9 (3)H13B—C13—H13C109.5
C5—C6—C13120.4 (3)C7—N1—S1126.7 (3)
C1—C6—C13122.7 (3)C7—N1—H1N116 (3)
C12—C7—C8120.2 (3)S1—N1—H1N115 (3)
C12—C7—N1117.0 (3)O1—S1—O2118.89 (17)
C8—C7—N1122.8 (3)O1—S1—N1109.67 (17)
C9—C8—C7118.7 (3)O2—S1—N1104.33 (16)
C9—C8—H8120.7O1—S1—C1107.51 (16)
C7—C8—H8120.7O2—S1—C1108.91 (15)
C10—C9—C8122.1 (4)N1—S1—C1106.97 (16)
C10—C9—Cl2119.4 (3)
C6—C1—C2—C30.4 (5)C8—C9—C10—C11−0.2 (7)
S1—C1—C2—C3−179.7 (3)Cl2—C9—C10—C11−179.9 (4)
C1—C2—C3—C41.2 (5)C9—C10—C11—C12−0.4 (7)
C2—C3—C4—C5−1.0 (5)C10—C11—C12—C70.5 (7)
C2—C3—C4—Cl1−178.9 (3)C8—C7—C12—C11−0.1 (6)
C3—C4—C5—C6−0.7 (6)N1—C7—C12—C11177.6 (4)
Cl1—C4—C5—C6177.2 (3)C12—C7—N1—S1155.4 (3)
C4—C5—C6—C12.1 (5)C8—C7—N1—S1−27.0 (5)
C4—C5—C6—C13−177.0 (3)C7—N1—S1—O1−36.2 (4)
C2—C1—C6—C5−2.0 (5)C7—N1—S1—O2−164.6 (3)
S1—C1—C6—C5178.1 (2)C7—N1—S1—C180.1 (3)
C2—C1—C6—C13177.2 (3)C2—C1—S1—O12.0 (3)
S1—C1—C6—C13−2.8 (4)C6—C1—S1—O1−178.1 (3)
C12—C7—C8—C9−0.5 (5)C2—C1—S1—O2132.0 (3)
N1—C7—C8—C9−178.1 (3)C6—C1—S1—O2−48.0 (3)
C7—C8—C9—C100.6 (6)C2—C1—S1—N1−115.7 (3)
C7—C8—C9—Cl2−179.7 (3)C6—C1—S1—N164.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (2)2.08 (2)2.926 (4)175 (4)

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2031).

References

  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1825. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o476. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009b). Acta Cryst. E65, o717. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography