PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1531.
Published online 2010 June 5. doi:  10.1107/S1600536810019483
PMCID: PMC3006772

Acanthoic acid

Abstract

The title compound [systematic name: (1R,4aR,7S,8aS,10aS)-1,4a,7-trimethyl-7-vinyl-1,2,3,4,4a,6,7,8,8a,9,10,10a-dodeca­hydro­phenanthrene-1-carb­oxy­lic acid], C20H30O2, is a pimarane-type diterpene extracted from Croton oblongifolius. There are two independent mol­ecules in the asymmetric unit. In both of these, the six-membered rings A, B and C adopt chair, boat and half-chair conformations, respectively. Rings A and B are trans-fused. The two mol­ecules in the asymmetric unit form O—H(...)O hydrogen-bonded R 2 2(8) dimers. The absolute configuration was assigned on the basis of the published literature on analogous structures.

Related literature

For background to the structure of acanthoic acid, see: Kim et al. (1998 [triangle]); Ling et al. (2001 [triangle]); Suh et al. (2001 [triangle]). For the related absolute configuration, see: Ling et al. (2000 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1531-scheme1.jpg

Experimental

Crystal data

  • C20H30O2
  • M r = 302.44
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-66-o1531-efi1.jpg
  • a = 12.8697 (16) Å
  • c = 21.768 (2) Å
  • V = 3605.5 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 100 K
  • 0.40 × 0.20 × 0.02 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • 21616 measured reflections
  • 4824 independent reflections
  • 3830 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.158
  • S = 1.02
  • 4824 reflections
  • 405 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019483/fj2300sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019483/fj2300Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by a grant under the program Strategic Scholarships for Frontier Research Network for the PhD Program Thai Doctoral degree from the Office of the Higher Education Commission, Thailand, the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphisek­somphot Endowment Fund), the Department of Chemistry, Faculty of Science, Chulalongkorn University, and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced materials are also gratefully acknowledged. Finally, we thank the Research Funds from the Faculty of Science (A1B1), the Thai Government Stimulus Package 2 (TKK2555) under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture for their support of X-ray crystallography analysis by supporting the X-ray analysis fund.

supplementary crystallographic information

Comment

Acanthoic acid is a pimarane-type diterpene. It was first isolated from root bark of Acanthopanax koreanum Nakai (Araliaceae) (Kim et al., 1998) which has been used for treatment of neuralgia, hypertension, rheumatism and diabetes (Ling et al., 2001). This natural product exhibits anti-inflammatory activity (Suh et al., 2001). In this work, acanthoic acid was isolated in high yield from stem bark of Croton oblongifolius from Ratchaburi Province, Thailand.

There are two independent molecules in the asymmetric unit. In both independent molecules, the six memberred rings A, B and C adopts a chair, boat and half-chair conformations, respectively with the puckering parameters: Q = 0.546 Å, θ = 179.5° and [var phi] = -107.0° for A, Q = 0.766 Å, θ = 89.9° and [var phi] = -73.3° for B and Q = 0.493 Å, θ = 128.4° and [var phi] = 35.2° for C. Rings A/B is trans-fused. The ethylene group substituted at C13 is in an equatorial position. The two molecules in the asymmetric unit form O—H···O hydrogen-bonded R22(8) dimers. The absolute configuration was assigned by comparison with the crystal structure of p-bromobenzoate ester-acanthoic derivative (Ling et al., 2000).

Experimental

Dried powder of stem bark of Croton oblongifolius Roxb. (5.23 kg) from Ratchaburi province was extracted with hexane (4Lx5). The hexane crude extract was obtained as viscous yellow brown oil. This crude extract was purified by quick column chromatography on silica gel using a mixture of hexane and ethyl acetate (100:0-0:100). Fractions with similar components were combined according to TLC profile. The combined fraction eluted with a 7:3 mixture of hexane and ethyl acetate was crystallized in hexane and ethyl acetate to give colourless crystals (5.5% yield).

mp. 140-142oC; [a]25D -36.1 (c = 0.42, benzene); 1H-NMR (400 MHz, CDCl3) d 5.81 (dd, 1H, J=10.6, 17.4 Hz, H-15), 5.39 (m, 1H, H-11), 4.93 (dd, 1H, J=1.2, 17.4 Hz, H-16 trans), 4.86 (dd, 1H, J=1.2, 10.6 Hz, H-16 cis), 2.31 (m, 1H, H-8), 2.21 (m, 1H, H-2 b), 2.15 (m, 1H, H-3a), 2.01 (m, 1H, H-12a), 1.93 (m, 1H, H-2a), 1.89 (m, 1H, H-6 b), 1.81 (m, 1H, H-1a), 1.77 (m, 1H, H-12 b), 1.73 (m, 1H, H-7a), 1.66 (dd, 1H, J=6.2, 13.0 Hz, H-5), 1.48 (m, 1H, H-6a), 1.45 (m, 1H, H-14a), 1.28 (m, 1H, H-1 b), 1.25 (s, 3H, H-18), 1.21 (m, 1H, H-7 b), 1.05 (m, 1H, H-3 b), 1.03 (m, 1H, H-14 b), 0.99 (s, 3H, H-20), 0.96 (s, 3H, H-17); 13C NMR (100 MHz, CDCl3) d 184.60 (C-19), 150.23 (C-15), 149.85 (C-9), 116.59 (C-11), 109.16 (C-16), 47.99 (C-5), 44.21 (C-4), 41.92 (C-1), 41.80 (C-14), 38.43 (C-10), 38.08 (C-3), 37.47 (C-12), 34.86 (C-13), 28.67 (C-8), 28.56 (C-18), 27.76 (C-7), 22.40 (C-20), 22.17 (C-17), 20.34 (C-6), 18.91 (C-2)

Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 Å (CH3), 0.97 Å (CH2), 0.93 Å (CH), and Uiso(H) = 1.20 Ueq(C) for methylene and aromatic, 1.50 Ueq(C) for methyl. The absolute structure could not be determined from the X-ray analysis, but it is known from earlier work on related compounds (Ling et al., 2000). In the absence of significant anomalous scattering effects, 3,697 Friedel pairs were therefore merged before the final refinement.

Figures

Fig. 1.
The asymmetric unit of the title compound showing two independent molecules. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
Fig. 2.
The crystal structure of the title compound viewed along the a-axis.

Crystal data

C20H30O2Dx = 1.114 Mg m3
Mr = 302.44Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43Cell parameters from 9639 reflections
Hall symbol: P 4cwθ = 1.6–30.2°
a = 12.8697 (16) ŵ = 0.07 mm1
c = 21.768 (2) ÅT = 100 K
V = 3605.5 (7) Å3Needle, colourless
Z = 80.40 × 0.20 × 0.02 mm
F(000) = 1328

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3830 reflections with I > 2σ(I)
Radiation source: MoRint = 0.050
graphiteθmax = 30.2°, θmin = 1.6°
[var phi] and ω scansh = −16→16
21616 measured reflectionsk = −17→17
4824 independent reflectionsl = −25→28

Refinement

Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056w = 1/[σ2(Fo2) + (0.0853P)2 + 1.0669P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.158(Δ/σ)max = 0.002
S = 1.02Δρmax = 0.37 e Å3
4824 reflectionsΔρmin = −0.29 e Å3
405 parameters

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2020 (3)0.6538 (3)0.07071 (16)0.0369 (7)
H1A0.1330.67530.08330.044*
H1B0.2080.66590.02690.044*
C20.2143 (3)0.5365 (3)0.08320 (18)0.0395 (8)
H2A0.15820.49910.06330.047*
H2B0.27930.51250.06570.047*
C30.2130 (3)0.5131 (3)0.15123 (18)0.0389 (7)
H3A0.22460.43930.1570.047*
H3B0.14460.52930.16730.047*
C40.2946 (2)0.5735 (2)0.18865 (14)0.0283 (6)
C50.2819 (2)0.6927 (2)0.17370 (13)0.0257 (6)
H50.21170.71030.18760.031*
C60.3540 (2)0.7641 (2)0.21113 (15)0.0332 (6)
H6A0.42560.74380.20410.04*
H6B0.33930.75530.25450.04*
C70.3407 (3)0.8792 (3)0.19396 (17)0.0384 (7)
H7A0.33870.92040.23130.046*
H7B0.40050.90150.17030.046*
C80.2417 (2)0.9002 (2)0.15664 (15)0.0309 (6)
H80.1820.87550.18050.037*
C90.2483 (2)0.8366 (2)0.09816 (14)0.0307 (6)
C100.2833 (2)0.7217 (2)0.10447 (13)0.0261 (6)
C110.2242 (3)0.8779 (3)0.04395 (17)0.0439 (8)
H110.23220.83610.00940.053*
C120.1851 (4)0.9870 (3)0.03404 (18)0.0535 (10)
H12A0.12870.98560.00450.064*
H12B0.24061.02890.01690.064*
C130.1463 (3)1.0377 (3)0.09429 (18)0.0481 (9)
C140.2265 (3)1.0152 (3)0.14356 (18)0.0436 (8)
H14A0.20551.04960.18120.052*
H14B0.29251.04470.1310.052*
C150.1282 (5)1.1516 (4)0.0829 (2)0.0853 (19)
H150.09331.16360.04610.102*
C160.1472 (8)1.2286 (4)0.1089 (3)0.123 (3)
H16A0.1821.22630.14630.147*
H16B0.12751.29210.09220.147*
C170.0409 (3)0.9895 (4)0.1120 (2)0.0610 (12)
H17A0.04840.91560.11590.092*
H17B−0.00931.00470.08060.092*
H17C0.0181.01810.15040.092*
C180.2726 (3)0.5543 (3)0.25738 (17)0.0429 (8)
H18A0.20510.58110.26760.064*
H18B0.32430.58880.28170.064*
H18C0.27450.4810.26560.064*
C190.4032 (2)0.5295 (2)0.17572 (14)0.0312 (6)
C200.3915 (2)0.7082 (2)0.07483 (14)0.0332 (7)
H20A0.39090.73710.03420.05*
H20B0.40830.63560.07260.05*
H20C0.44270.74340.09930.05*
O10.42045 (17)0.46242 (17)0.13726 (11)0.0352 (5)
O20.47604 (18)0.5668 (2)0.21170 (12)0.0437 (6)
H20.5320.54040.20270.066*
C1'0.8991 (3)0.6408 (3)0.09529 (17)0.0415 (8)
H1'10.97030.62160.0860.05*
H1'20.89590.7160.09690.05*
C2'0.8713 (3)0.5981 (3)0.15830 (16)0.0468 (9)
H2'10.92220.62160.18810.056*
H2'20.80390.62480.17060.056*
C3'0.8682 (3)0.4805 (3)0.15808 (16)0.0429 (8)
H3'10.84630.45640.19830.051*
H3'20.93770.45420.15070.051*
C4'0.7945 (2)0.4360 (2)0.10933 (15)0.0322 (6)
C5'0.8256 (2)0.4816 (2)0.04527 (14)0.0271 (6)
H5'0.89810.46030.03970.033*
C6'0.7679 (2)0.4328 (2)−0.00971 (15)0.0316 (6)
H6'10.78760.3603−0.01310.038*
H6'20.69370.4357−0.00210.038*
C7'0.7919 (2)0.4880 (2)−0.07080 (14)0.0299 (6)
H7'10.79840.4365−0.10310.036*
H7'20.73420.5333−0.08130.036*
C8'0.8922 (2)0.5526 (2)−0.06797 (13)0.0257 (6)
H8'0.94940.5068−0.05570.031*
C9'0.8790 (2)0.6354 (2)−0.01921 (15)0.0301 (6)
C10'0.8288 (2)0.6029 (2)0.04225 (14)0.0285 (6)
C11'0.9096 (3)0.7328 (2)−0.02861 (17)0.0402 (8)
H11'0.89870.78010.0030.048*
C12'0.9605 (3)0.7729 (3)−0.08629 (19)0.0435 (8)
H12C1.0180.8177−0.07510.052*
H12D0.91060.8144−0.1090.052*
C13'1.0012 (2)0.6844 (3)−0.12842 (16)0.0355 (7)
C14'0.9179 (2)0.5993 (2)−0.13061 (14)0.0332 (6)
H14C0.85490.6283−0.14810.04*
H14D0.94140.5442−0.15760.04*
C15'1.0229 (3)0.7320 (3)−0.1906 (2)0.0536 (10)
H15'1.07430.7829−0.19080.064*
C16'0.9827 (4)0.7138 (5)−0.2418 (2)0.0762 (15)
H16C0.93070.664−0.24530.091*
H16D1.00470.7502−0.27630.091*
C17'1.1037 (2)0.6415 (3)−0.10289 (17)0.0401 (8)
H17D1.12670.5847−0.1280.06*
H17E1.09320.6176−0.06160.06*
H17F1.15530.6954−0.10310.06*
C18'0.8066 (3)0.3167 (3)0.10861 (19)0.0447 (8)
H18D0.79360.28970.1490.067*
H18E0.8760.29890.09630.067*
H18F0.75790.28720.08010.067*
C19'0.6819 (2)0.4561 (2)0.12987 (15)0.0318 (6)
C20'0.7191 (2)0.6510 (2)0.04652 (16)0.0338 (7)
H20D0.7230.72420.03830.051*
H20E0.69160.64010.0870.051*
H20F0.67430.61850.01690.051*
O1'0.66053 (17)0.4932 (2)0.17988 (11)0.0402 (5)
O2'0.61042 (16)0.42401 (18)0.09132 (11)0.0362 (5)
H2'0.55270.43360.10630.054*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0352 (16)0.0399 (17)0.0356 (17)0.0035 (13)−0.0104 (13)−0.0085 (13)
C20.0300 (15)0.0364 (17)0.052 (2)−0.0012 (13)−0.0083 (14)−0.0164 (15)
C30.0293 (15)0.0311 (15)0.056 (2)−0.0040 (12)0.0048 (14)−0.0024 (15)
C40.0268 (13)0.0308 (14)0.0273 (14)0.0015 (11)0.0060 (11)0.0024 (11)
C50.0238 (12)0.0294 (14)0.0241 (14)0.0008 (10)0.0007 (10)−0.0004 (11)
C60.0321 (15)0.0382 (16)0.0292 (15)−0.0013 (12)−0.0035 (12)−0.0085 (13)
C70.0365 (16)0.0379 (17)0.0408 (19)−0.0064 (13)−0.0014 (14)−0.0107 (14)
C80.0306 (14)0.0302 (14)0.0320 (15)−0.0015 (11)0.0090 (12)−0.0022 (12)
C90.0304 (14)0.0284 (14)0.0333 (16)0.0010 (11)0.0095 (12)0.0000 (12)
C100.0267 (13)0.0283 (13)0.0232 (14)0.0010 (10)0.0013 (10)−0.0035 (11)
C110.056 (2)0.0450 (19)0.0308 (17)0.0130 (16)0.0074 (15)0.0021 (14)
C120.070 (3)0.050 (2)0.041 (2)0.0220 (19)0.0139 (18)0.0119 (17)
C130.064 (2)0.0360 (17)0.044 (2)0.0177 (16)0.0181 (18)0.0112 (15)
C140.054 (2)0.0311 (16)0.046 (2)0.0001 (14)0.0140 (16)−0.0039 (14)
C150.152 (5)0.046 (3)0.057 (3)0.037 (3)0.043 (3)0.019 (2)
C160.259 (10)0.047 (3)0.063 (4)0.002 (4)0.052 (5)0.001 (3)
C170.049 (2)0.066 (3)0.068 (3)0.019 (2)0.007 (2)0.017 (2)
C180.0443 (19)0.0463 (19)0.0381 (19)0.0087 (15)0.0151 (15)0.0136 (15)
C190.0302 (14)0.0334 (15)0.0301 (16)0.0031 (12)0.0049 (12)0.0063 (12)
C200.0337 (15)0.0368 (16)0.0290 (16)0.0009 (12)0.0090 (12)−0.0002 (12)
O10.0297 (11)0.0339 (11)0.0420 (13)0.0043 (9)0.0057 (9)−0.0020 (9)
O20.0306 (11)0.0593 (16)0.0413 (14)0.0109 (11)−0.0038 (10)−0.0125 (12)
C1'0.0365 (17)0.0484 (19)0.0395 (18)−0.0164 (14)0.0051 (14)−0.0145 (15)
C2'0.0376 (18)0.070 (2)0.0332 (18)−0.0149 (17)0.0003 (14)−0.0156 (17)
C3'0.0282 (15)0.070 (2)0.0309 (17)−0.0012 (15)0.0022 (13)−0.0002 (16)
C4'0.0258 (14)0.0394 (16)0.0312 (16)0.0013 (12)0.0038 (12)0.0000 (12)
C5'0.0217 (12)0.0287 (13)0.0309 (15)−0.0003 (10)0.0043 (11)−0.0007 (11)
C6'0.0336 (15)0.0293 (14)0.0319 (16)−0.0072 (12)0.0048 (12)−0.0071 (12)
C7'0.0295 (14)0.0318 (14)0.0284 (15)−0.0045 (11)−0.0005 (11)−0.0061 (12)
C8'0.0259 (13)0.0252 (13)0.0261 (14)0.0008 (10)0.0033 (11)−0.0027 (11)
C9'0.0251 (13)0.0291 (14)0.0363 (16)−0.0030 (11)0.0088 (12)−0.0072 (12)
C10'0.0255 (13)0.0261 (13)0.0337 (16)−0.0048 (10)0.0063 (11)−0.0087 (11)
C11'0.0442 (18)0.0266 (15)0.050 (2)−0.0019 (13)0.0177 (15)−0.0090 (14)
C12'0.0411 (18)0.0291 (16)0.060 (2)−0.0036 (13)0.0171 (16)0.0034 (15)
C13'0.0319 (15)0.0380 (16)0.0366 (17)−0.0001 (12)0.0098 (13)0.0089 (13)
C14'0.0330 (15)0.0371 (16)0.0296 (15)0.0026 (12)0.0022 (12)0.0000 (12)
C15'0.045 (2)0.063 (2)0.053 (3)0.0037 (17)0.0147 (18)0.022 (2)
C16'0.079 (3)0.111 (4)0.039 (3)0.004 (3)0.008 (2)0.013 (2)
C17'0.0322 (16)0.0484 (19)0.0398 (19)−0.0012 (13)0.0072 (14)0.0047 (15)
C18'0.0447 (19)0.0415 (18)0.048 (2)0.0055 (15)0.0097 (16)0.0135 (16)
C19'0.0259 (14)0.0368 (16)0.0328 (16)−0.0006 (11)0.0042 (12)0.0027 (12)
C20'0.0332 (15)0.0296 (14)0.0387 (17)0.0017 (12)0.0126 (13)−0.0055 (13)
O1'0.0287 (11)0.0606 (15)0.0312 (12)0.0039 (10)0.0038 (9)−0.0057 (11)
O2'0.0251 (10)0.0459 (13)0.0374 (12)−0.0053 (9)0.0070 (9)−0.0049 (10)

Geometric parameters (Å, °)

C1—C21.542 (5)C1'—C2'1.520 (5)
C1—C101.548 (4)C1'—C10'1.545 (4)
C1—H1A0.97C1'—H1'10.97
C1—H1B0.97C1'—H1'20.97
C2—C31.511 (6)C2'—C3'1.514 (6)
C2—H2A0.97C2'—H2'10.97
C2—H2B0.97C2'—H2'20.97
C3—C41.540 (4)C3'—C4'1.534 (5)
C3—H3A0.97C3'—H3'10.97
C3—H3B0.97C3'—H3'20.97
C4—C191.534 (4)C4'—C19'1.538 (4)
C4—C181.543 (4)C4'—C18'1.544 (5)
C4—C51.577 (4)C4'—C5'1.565 (4)
C5—C61.539 (4)C5'—C6'1.542 (4)
C5—C101.553 (4)C5'—C10'1.563 (4)
C5—H50.98C5'—H5'0.98
C6—C71.537 (5)C6'—C7'1.539 (4)
C6—H6A0.97C6'—H6'10.97
C6—H6B0.97C6'—H6'20.97
C7—C81.535 (5)C7'—C8'1.536 (4)
C7—H7A0.97C7'—H7'10.97
C7—H7B0.97C7'—H7'20.97
C8—C91.515 (4)C8'—C9'1.514 (4)
C8—C141.520 (4)C8'—C14'1.526 (4)
C8—H80.98C8'—H8'0.98
C9—C111.331 (5)C9'—C11'1.329 (4)
C9—C101.552 (4)C9'—C10'1.544 (4)
C10—C201.545 (4)C10'—C20'1.545 (4)
C11—C121.507 (5)C11'—C12'1.507 (5)
C11—H110.93C11'—H11'0.93
C12—C131.548 (5)C12'—C13'1.553 (5)
C12—H12A0.97C12'—H12C0.97
C12—H12B0.97C12'—H12D0.97
C13—C151.505 (5)C13'—C15'1.511 (5)
C13—C141.516 (6)C13'—C17'1.534 (5)
C13—C171.540 (6)C13'—C14'1.534 (5)
C14—H14A0.97C14'—H14C0.97
C14—H14B0.97C14'—H14D0.97
C15—C161.167 (8)C15'—C16'1.251 (7)
C15—H150.93C15'—H15'0.93
C16—H16A0.93C16'—H16C0.93
C16—H16B0.93C16'—H16D0.93
C17—H17A0.96C17'—H17D0.96
C17—H17B0.96C17'—H17E0.96
C17—H17C0.96C17'—H17F0.96
C18—H18A0.96C18'—H18D0.96
C18—H18B0.96C18'—H18E0.96
C18—H18C0.96C18'—H18F0.96
C19—O11.223 (4)C19'—O1'1.220 (4)
C19—O21.313 (4)C19'—O2'1.312 (4)
C20—H20A0.96C20'—H20D0.96
C20—H20B0.96C20'—H20E0.96
C20—H20C0.96C20'—H20F0.96
O2—H20.82O2'—H2'0.82
C2—C1—C10113.6 (3)C2'—C1'—C10'115.0 (3)
C2—C1—H1A108.9C2'—C1'—H1'1108.5
C10—C1—H1A108.9C10'—C1'—H1'1108.5
C2—C1—H1B108.9C2'—C1'—H1'2108.5
C10—C1—H1B108.9C10'—C1'—H1'2108.5
H1A—C1—H1B107.7H1'1—C1'—H1'2107.5
C3—C2—C1111.5 (3)C3'—C2'—C1'111.4 (3)
C3—C2—H2A109.3C3'—C2'—H2'1109.4
C1—C2—H2A109.3C1'—C2'—H2'1109.4
C3—C2—H2B109.3C3'—C2'—H2'2109.4
C1—C2—H2B109.3C1'—C2'—H2'2109.4
H2A—C2—H2B108H2'1—C2'—H2'2108
C2—C3—C4114.2 (3)C2'—C3'—C4'113.1 (3)
C2—C3—H3A108.7C2'—C3'—H3'1109
C4—C3—H3A108.7C4'—C3'—H3'1109
C2—C3—H3B108.7C2'—C3'—H3'2109
C4—C3—H3B108.7C4'—C3'—H3'2109
H3A—C3—H3B107.6H3'1—C3'—H3'2107.8
C19—C4—C3109.8 (3)C3'—C4'—C19'108.6 (3)
C19—C4—C18106.6 (2)C3'—C4'—C18'108.4 (3)
C3—C4—C18107.9 (3)C19'—C4'—C18'105.4 (3)
C19—C4—C5114.6 (2)C3'—C4'—C5'108.6 (2)
C3—C4—C5108.1 (2)C19'—C4'—C5'115.9 (3)
C18—C4—C5109.7 (2)C18'—C4'—C5'109.8 (3)
C6—C5—C10111.3 (2)C6'—C5'—C10'112.8 (2)
C6—C5—C4114.2 (2)C6'—C5'—C4'114.6 (2)
C10—C5—C4115.6 (2)C10'—C5'—C4'114.8 (2)
C6—C5—H5104.8C6'—C5'—H5'104.4
C10—C5—H5104.8C10'—C5'—H5'104.4
C4—C5—H5104.8C4'—C5'—H5'104.4
C5—C6—C7112.3 (2)C7'—C6'—C5'112.7 (2)
C5—C6—H6A109.1C7'—C6'—H6'1109
C7—C6—H6A109.1C5'—C6'—H6'1109
C5—C6—H6B109.1C7'—C6'—H6'2109
C7—C6—H6B109.1C5'—C6'—H6'2109
H6A—C6—H6B107.9H6'1—C6'—H6'2107.8
C8—C7—C6113.0 (2)C8'—C7'—C6'112.5 (2)
C8—C7—H7A109C8'—C7'—H7'1109.1
C6—C7—H7A109C6'—C7'—H7'1109.1
C8—C7—H7B109C8'—C7'—H7'2109.1
C6—C7—H7B109C6'—C7'—H7'2109.1
H7A—C7—H7B107.8H7'1—C7'—H7'2107.8
C9—C8—C14112.0 (3)C9'—C8'—C14'111.9 (2)
C9—C8—C7107.7 (3)C9'—C8'—C7'108.4 (2)
C14—C8—C7112.1 (3)C14'—C8'—C7'111.1 (2)
C9—C8—H8108.3C9'—C8'—H8'108.5
C14—C8—H8108.3C14'—C8'—H8'108.5
C7—C8—H8108.3C7'—C8'—H8'108.5
C11—C9—C8121.1 (3)C11'—C9'—C8'121.5 (3)
C11—C9—C10121.8 (3)C11'—C9'—C10'120.9 (3)
C8—C9—C10117.1 (3)C8'—C9'—C10'117.6 (2)
C20—C10—C1110.3 (3)C20'—C10'—C9'109.0 (3)
C20—C10—C9109.4 (2)C20'—C10'—C1'111.3 (2)
C1—C10—C9107.5 (2)C9'—C10'—C1'108.5 (2)
C20—C10—C5112.8 (2)C20'—C10'—C5'111.9 (2)
C1—C10—C5108.5 (2)C9'—C10'—C5'108.6 (2)
C9—C10—C5108.1 (2)C1'—C10'—C5'107.4 (3)
C9—C11—C12125.2 (3)C9'—C11'—C12'125.5 (3)
C9—C11—H11117.4C9'—C11'—H11'117.3
C12—C11—H11117.4C12'—C11'—H11'117.3
C11—C12—C13112.3 (3)C11'—C12'—C13'112.8 (3)
C11—C12—H12A109.1C11'—C12'—H12C109
C13—C12—H12A109.1C13'—C12'—H12C109
C11—C12—H12B109.1C11'—C12'—H12D109
C13—C12—H12B109.1C13'—C12'—H12D109
H12A—C12—H12B107.9H12C—C12'—H12D107.8
C15—C13—C14114.1 (4)C15'—C13'—C17'108.1 (3)
C15—C13—C17107.3 (4)C15'—C13'—C14'113.0 (3)
C14—C13—C17110.2 (3)C17'—C13'—C14'110.8 (3)
C15—C13—C12108.7 (3)C15'—C13'—C12'107.1 (3)
C14—C13—C12107.4 (3)C17'—C13'—C12'109.9 (3)
C17—C13—C12109.0 (4)C14'—C13'—C12'107.8 (3)
C13—C14—C8114.0 (3)C8'—C14'—C13'113.9 (3)
C13—C14—H14A108.8C8'—C14'—H14C108.8
C8—C14—H14A108.8C13'—C14'—H14C108.8
C13—C14—H14B108.8C8'—C14'—H14D108.8
C8—C14—H14B108.8C13'—C14'—H14D108.8
H14A—C14—H14B107.7H14C—C14'—H14D107.7
C16—C15—C13135.5 (7)C16'—C15'—C13'130.2 (4)
C16—C15—H15112.2C16'—C15'—H15'114.9
C13—C15—H15112.2C13'—C15'—H15'114.9
C15—C16—H16A120C15'—C16'—H16C120
C15—C16—H16B120C15'—C16'—H16D120
H16A—C16—H16B120H16C—C16'—H16D120
C13—C17—H17A109.5C13'—C17'—H17D109.5
C13—C17—H17B109.5C13'—C17'—H17E109.5
H17A—C17—H17B109.5H17D—C17'—H17E109.5
C13—C17—H17C109.5C13'—C17'—H17F109.5
H17A—C17—H17C109.5H17D—C17'—H17F109.5
H17B—C17—H17C109.5H17E—C17'—H17F109.5
C4—C18—H18A109.5C4'—C18'—H18D109.5
C4—C18—H18B109.5C4'—C18'—H18E109.5
H18A—C18—H18B109.5H18D—C18'—H18E109.5
C4—C18—H18C109.5C4'—C18'—H18F109.5
H18A—C18—H18C109.5H18D—C18'—H18F109.5
H18B—C18—H18C109.5H18E—C18'—H18F109.5
O1—C19—O2122.5 (3)O1'—C19'—O2'122.4 (3)
O1—C19—C4123.5 (3)O1'—C19'—C4'122.5 (3)
O2—C19—C4114.0 (3)O2'—C19'—C4'114.9 (3)
C10—C20—H20A109.5C10'—C20'—H20D109.5
C10—C20—H20B109.5C10'—C20'—H20E109.5
H20A—C20—H20B109.5H20D—C20'—H20E109.5
C10—C20—H20C109.5C10'—C20'—H20F109.5
H20A—C20—H20C109.5H20D—C20'—H20F109.5
H20B—C20—H20C109.5H20E—C20'—H20F109.5
C19—O2—H2109.5C19'—O2'—H2'109.5
C10—C1—C2—C354.8 (4)C10'—C1'—C2'—C3'54.7 (4)
C1—C2—C3—C4−55.4 (4)C1'—C2'—C3'—C4'−55.4 (4)
C2—C3—C4—C19−72.7 (3)C2'—C3'—C4'—C19'−72.1 (3)
C2—C3—C4—C18171.5 (3)C2'—C3'—C4'—C18'173.9 (3)
C2—C3—C4—C552.9 (3)C2'—C3'—C4'—C5'54.7 (3)
C19—C4—C5—C6−61.0 (3)C3'—C4'—C5'—C6'172.2 (3)
C3—C4—C5—C6176.2 (3)C19'—C4'—C5'—C6'−65.4 (3)
C18—C4—C5—C658.8 (3)C18'—C4'—C5'—C6'53.8 (3)
C19—C4—C5—C1070.1 (3)C3'—C4'—C5'—C10'−55.0 (3)
C3—C4—C5—C10−52.7 (3)C19'—C4'—C5'—C10'67.5 (3)
C18—C4—C5—C10−170.1 (3)C18'—C4'—C5'—C10'−173.3 (3)
C10—C5—C6—C745.5 (3)C10'—C5'—C6'—C7'39.9 (3)
C4—C5—C6—C7178.7 (2)C4'—C5'—C6'—C7'173.7 (2)
C5—C6—C7—C814.7 (4)C5'—C6'—C7'—C8'19.4 (4)
C6—C7—C8—C9−59.8 (3)C6'—C7'—C8'—C9'−61.1 (3)
C6—C7—C8—C14176.4 (3)C6'—C7'—C8'—C14'175.6 (2)
C14—C8—C9—C11−11.1 (4)C14'—C8'—C9'—C11'−13.8 (4)
C7—C8—C9—C11−134.9 (3)C7'—C8'—C9'—C11'−136.6 (3)
C14—C8—C9—C10169.4 (3)C14'—C8'—C9'—C10'166.3 (3)
C7—C8—C9—C1045.6 (3)C7'—C8'—C9'—C10'43.5 (3)
C2—C1—C10—C2071.9 (4)C11'—C9'—C10'—C20'71.0 (4)
C2—C1—C10—C9−169.0 (3)C8'—C9'—C10'—C20'−109.2 (3)
C2—C1—C10—C5−52.2 (3)C11'—C9'—C10'—C1'−50.4 (4)
C11—C9—C10—C2068.8 (4)C8'—C9'—C10'—C1'129.4 (3)
C8—C9—C10—C20−111.7 (3)C11'—C9'—C10'—C5'−166.9 (3)
C11—C9—C10—C1−51.0 (4)C8'—C9'—C10'—C5'13.0 (3)
C8—C9—C10—C1128.5 (3)C2'—C1'—C10'—C20'70.8 (4)
C11—C9—C10—C5−168.0 (3)C2'—C1'—C10'—C9'−169.3 (3)
C8—C9—C10—C511.6 (3)C2'—C1'—C10'—C5'−52.1 (4)
C6—C5—C10—C2062.5 (3)C6'—C5'—C10'—C20'64.1 (3)
C4—C5—C10—C20−70.0 (3)C4'—C5'—C10'—C20'−69.6 (3)
C6—C5—C10—C1−174.9 (2)C6'—C5'—C10'—C9'−56.3 (3)
C4—C5—C10—C152.6 (3)C4'—C5'—C10'—C9'170.0 (2)
C6—C5—C10—C9−58.7 (3)C6'—C5'—C10'—C1'−173.5 (2)
C4—C5—C10—C9168.9 (2)C4'—C5'—C10'—C1'52.8 (3)
C8—C9—C11—C12−2.4 (6)C8'—C9'—C11'—C12'−0.6 (6)
C10—C9—C11—C12177.1 (3)C10'—C9'—C11'—C12'179.2 (3)
C9—C11—C12—C13−16.0 (6)C9'—C11'—C12'—C13'−15.2 (5)
C11—C12—C13—C15169.3 (4)C11'—C12'—C13'—C15'165.0 (3)
C11—C12—C13—C1445.4 (5)C11'—C12'—C13'—C17'−77.8 (4)
C11—C12—C13—C17−74.0 (4)C11'—C12'—C13'—C14'43.1 (4)
C15—C13—C14—C8177.8 (3)C9'—C8'—C14'—C13'45.2 (3)
C17—C13—C14—C857.1 (4)C7'—C8'—C14'—C13'166.5 (3)
C12—C13—C14—C8−61.6 (4)C15'—C13'—C14'—C8'−178.1 (3)
C9—C8—C14—C1344.4 (4)C17'—C13'—C14'—C8'60.3 (4)
C7—C8—C14—C13165.6 (3)C12'—C13'—C14'—C8'−60.0 (4)
C14—C13—C15—C16−15.6 (10)C17'—C13'—C15'—C16'124.4 (5)
C17—C13—C15—C16106.8 (9)C14'—C13'—C15'—C16'1.3 (6)
C12—C13—C15—C16−135.4 (8)C12'—C13'—C15'—C16'−117.2 (5)
C3—C4—C19—O15.7 (4)C3'—C4'—C19'—O1'−6.0 (4)
C18—C4—C19—O1122.2 (3)C18'—C4'—C19'—O1'110.0 (4)
C5—C4—C19—O1−116.2 (3)C5'—C4'—C19'—O1'−128.4 (3)
C3—C4—C19—O2−171.4 (3)C3'—C4'—C19'—O2'178.4 (3)
C18—C4—C19—O2−54.8 (3)C18'—C4'—C19'—O2'−65.6 (3)
C5—C4—C19—O266.8 (3)C5'—C4'—C19'—O2'55.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2'—H2'···O10.821.872.687 (3)177
O2—H2···O1'0.821.832.649 (3)175

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2300).

References

  • Bruker (2008). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kim, Y. H., Chung, B. S. & Sankawa, U. (1998). J. Nat. Prod 51, 1080–1083.
  • Ling, T., Chowdhury, C., Kramer, B. A., Vong, B. G., Palladino, M. A. & Theodorakis, E. A. (2001). J. Org. Chem 66, 8843–8853. [PubMed]
  • Ling, T., Kramer, B. A., Palladino, M. A. & Theodorakis, E. A. (2000). Org. Lett.2, 2073–2076. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suh, Y. G., Kim, Y. H., Park, M. H., Choi, Y. H., Lee, H. K., Moon, J. Y., Min, K. H., Shin, D. Y., Jung, J. K., Park, O. H., Jeon, R. O., Park, H. S. & Kang, S. A. (2001). Bioorg. Med. Chem. Lett 11, 559–562. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography