PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1755.
Published online 2010 June 23. doi:  10.1107/S1600536810023512
PMCID: PMC3006771

p-Tolyl bis­(o-tolyl­amido)­phosphinate

Abstract

In the title compound, C21H23N2O2P, the P atom has a distorted tetra­hedral configuration. The O atom of the OC6H4-4-CH3 group and the N atoms show sp 2 character. In the crystal, adjacent mol­ecules are linked by N—H(...)O hydrogen bonds into helical chains parallel to the b axis.

Related literature

For a related structure, see: Pourayoubi et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1755-scheme1.jpg

Experimental

Crystal data

  • C21H23N2O2P
  • M r = 366.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1755-efi1.jpg
  • a = 12.157 (3) Å
  • b = 8.978 (2) Å
  • c = 18.080 (5) Å
  • β = 101.569 (1)°
  • V = 1933.3 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 293 K
  • 0.6 × 0.54 × 0.47 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.860, T max = 0.968
  • 23372 measured reflections
  • 4402 independent reflections
  • 3097 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.128
  • S = 1.06
  • 4402 reflections
  • 257 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: COLLECT (Nonius, 2001 [triangle]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: HKL DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023512/ng2779sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023512/ng2779Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support of this investigation by Islamic Azad University-Zanjan Branch is gratefully acknowledged.

supplementary crystallographic information

Comment

In the previous work, the structure determination of p-tolyl bis(p-tolylamido)phosphate (Pourayoubi et al., 2009) has been investigated; we report here on the crystal structure of title compound (Fig. 1). The title compound was synthesized from the reaction of (4-tolyl)-dichlorophosphate with an excess amount of ortho-toluidine (1:4 mole ratio). Single crystals were obtained from CHCl3/n-C6H14 at room temperature. Molecular structure of [4-H3C—C6H4O]P(O)[NHC6H4-2-CH3]2 is shown in Fig. 1. The phosphorus atom has a distorted tetrahedral configuration. The bond angles around P atom are in the range of 96.87 (7)° to 118.95 (8)°. The oxygen atom of OC6H4-4-CH3 moiety and the nitrogen atoms show sp2 character (the C15—O2—P1 angle is 124.67 (11)°, the C1—N1—P1 and C8—N2—P1 are 123.77 (12)° and 127.71 (12)°, respectively. In the crystal structure, molecules are linked via N—H···O hydrogen bonds (N1···O1 = 2.8963 (19) Å) into an extended chain (Fig. 2) parallel to the b axis.

Experimental

To a solution of (4-tolyl)-dichlorophosphate (2.250 g, 10 mmol) in 15 ml dry acetonitrile, a solution of ortho-toluidine (4.286 g, 40 mmol) in 30 ml acetonitrile was added at 0°C. After 4 h stirring, the solvent was evaporated in vacuum. The solid was washed with distilled water. Single crystals of the product were obtained from a solution of CHCl3/n-C6H14 at room temperature.

Refinement

H atoms of both nitrogen were found by Fourier differences, it was necessary to restrain distances setting the NH as 1.01 Å instead of 0.86 Å as the ideal would be, but under this proposal to refine, both distances are obtained, 0.9119 (152) Å for N1—H1 and 0.8982 (153) Å for N2—H21,respectively, which are more realistic. The difference can be due to the effect of hydrogen bond generates by N1—H1—O1. All other hydrogen atoms were placed geometrically.

Figures

Fig. 1.
A general view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A view of N—H···O hydrogen bond.

Crystal data

C21H23N2O2PF(000) = 776
Mr = 366.38Dx = 1.259 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 600 reflections
a = 12.157 (3) Åθ = 1–14°
b = 8.978 (2) ŵ = 0.16 mm1
c = 18.080 (5) ÅT = 293 K
β = 101.569 (1)°Priem, colourless
V = 1933.3 (8) Å30.6 × 0.54 × 0.47 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer4402 independent reflections
Radiation source: Enraf Nonius FR5903097 reflections with I > 2σ(I)
graphiteRint = 0.048
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.6°
CCD rotation images, thick slices scansh = −15→15
Absorption correction: multi-scan (Blessing, 1995)k = −10→11
Tmin = 0.860, Tmax = 0.968l = −19→23
23372 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0666P)2 + 0.2653P] where P = (Fo2 + 2Fc2)/3
4402 reflections(Δ/σ)max = 0.015
257 parametersΔρmax = 0.18 e Å3
2 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.28763 (13)0.18689 (18)0.26516 (10)0.0359 (4)
C20.25191 (16)0.3029 (2)0.21582 (11)0.0464 (4)
H20.30360.35350.19360.056*
C30.14023 (18)0.3444 (3)0.19930 (13)0.0606 (6)
H30.11710.42320.16650.073*
C40.06346 (18)0.2691 (3)0.23138 (15)0.0693 (7)
H4−0.01210.29510.21970.083*
C50.09918 (17)0.1546 (3)0.28107 (14)0.0620 (6)
H50.04660.10440.30270.074*
C60.21099 (15)0.1116 (2)0.29999 (11)0.0446 (4)
C70.24895 (19)−0.0078 (2)0.35748 (13)0.0628 (6)
H7A0.1847−0.05210.37220.094*
H7B0.29690.03510.4010.094*
H7C0.2896−0.08270.33610.094*
C80.43487 (15)0.36933 (19)0.41804 (9)0.0395 (4)
C90.47389 (18)0.2563 (2)0.46833 (11)0.0518 (5)
H90.52890.19150.45850.062*
C100.4311 (2)0.2392 (3)0.53349 (12)0.0656 (6)
H100.45590.16150.56660.079*
C110.3524 (2)0.3374 (3)0.54873 (13)0.0687 (7)
H110.32520.32830.59310.082*
C120.31363 (18)0.4494 (3)0.49840 (12)0.0614 (6)
H120.26030.51550.50950.074*
C130.35181 (15)0.4668 (2)0.43141 (10)0.0464 (5)
C140.3050 (2)0.5866 (3)0.37677 (16)0.0643 (6)
C150.71094 (14)0.1945 (2)0.36813 (10)0.0399 (4)
C160.76182 (16)0.1141 (2)0.43050 (12)0.0530 (5)
H160.72340.03780.44920.064*
C170.87118 (17)0.1486 (3)0.46506 (13)0.0607 (6)
H170.90560.09440.50720.073*
C180.93031 (17)0.2605 (3)0.43883 (13)0.0575 (5)
C190.87634 (17)0.3392 (3)0.37669 (13)0.0633 (6)
H190.91430.41630.35830.076*
C200.76747 (16)0.3071 (2)0.34082 (12)0.0539 (5)
H200.73310.36130.29870.065*
C211.0505 (2)0.2947 (4)0.47617 (17)0.0897 (9)
H21A1.05340.32420.52760.135*
H21B1.07840.37410.44950.135*
H21C1.09590.20750.47510.135*
N10.40296 (12)0.14475 (16)0.28185 (9)0.0387 (3)
N20.48102 (13)0.38993 (16)0.35183 (8)0.0393 (3)
O10.53434 (10)0.33484 (13)0.22624 (7)0.0420 (3)
O20.60148 (10)0.15191 (13)0.33463 (7)0.0444 (3)
P10.50634 (4)0.26305 (4)0.29312 (2)0.03385 (15)
H10.4230 (17)0.0477 (18)0.2912 (12)0.062 (6)*
H210.4928 (17)0.4862 (18)0.3421 (12)0.061 (6)*
H14C0.267 (3)0.548 (3)0.3309 (19)0.104 (10)*
H14B0.249 (3)0.645 (4)0.3955 (18)0.123 (11)*
H14A0.363 (3)0.660 (3)0.3641 (17)0.105 (10)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0343 (9)0.0320 (9)0.0410 (9)−0.0007 (7)0.0063 (7)−0.0066 (7)
C20.0451 (11)0.0446 (10)0.0496 (11)0.0036 (8)0.0099 (9)0.0016 (8)
C30.0508 (12)0.0606 (13)0.0673 (13)0.0155 (10)0.0046 (10)0.0094 (11)
C40.0381 (11)0.0708 (15)0.0969 (19)0.0124 (10)0.0085 (12)0.0035 (13)
C50.0429 (12)0.0608 (13)0.0875 (16)−0.0049 (10)0.0255 (11)−0.0025 (12)
C60.0434 (10)0.0400 (10)0.0524 (11)−0.0032 (8)0.0142 (8)−0.0028 (8)
C70.0634 (13)0.0583 (13)0.0724 (14)−0.0046 (11)0.0272 (11)0.0159 (11)
C80.0440 (10)0.0391 (9)0.0351 (9)−0.0131 (7)0.0074 (7)−0.0069 (7)
C90.0580 (12)0.0516 (12)0.0446 (11)−0.0084 (9)0.0072 (9)0.0031 (9)
C100.0774 (16)0.0723 (15)0.0447 (12)−0.0274 (13)0.0066 (11)0.0083 (10)
C110.0781 (16)0.0866 (17)0.0469 (12)−0.0379 (14)0.0255 (11)−0.0122 (12)
C120.0569 (12)0.0702 (15)0.0627 (13)−0.0206 (11)0.0254 (10)−0.0215 (12)
C130.0456 (10)0.0465 (11)0.0488 (10)−0.0140 (8)0.0137 (8)−0.0136 (8)
C140.0639 (15)0.0566 (14)0.0739 (16)0.0124 (12)0.0176 (13)−0.0040 (12)
C150.0335 (9)0.0392 (10)0.0470 (10)0.0002 (7)0.0080 (8)−0.0031 (8)
C160.0428 (11)0.0542 (12)0.0610 (12)0.0002 (9)0.0085 (9)0.0113 (10)
C170.0464 (12)0.0712 (14)0.0597 (13)0.0073 (10)−0.0009 (10)0.0060 (11)
C180.0394 (11)0.0678 (14)0.0626 (13)−0.0017 (9)0.0039 (10)−0.0080 (11)
C190.0461 (12)0.0682 (14)0.0757 (15)−0.0163 (10)0.0125 (11)0.0062 (12)
C200.0420 (11)0.0583 (12)0.0592 (12)−0.0062 (9)0.0052 (9)0.0133 (10)
C210.0464 (14)0.108 (2)0.105 (2)−0.0113 (14)−0.0079 (14)−0.0065 (18)
N10.0352 (8)0.0277 (7)0.0527 (9)0.0005 (6)0.0075 (6)−0.0013 (6)
N20.0519 (9)0.0282 (8)0.0399 (8)−0.0047 (6)0.0144 (7)−0.0016 (6)
O10.0477 (7)0.0385 (7)0.0428 (7)−0.0021 (5)0.0159 (5)0.0007 (5)
O20.0335 (6)0.0342 (6)0.0627 (8)−0.0016 (5)0.0025 (6)0.0045 (6)
P10.0341 (2)0.0287 (2)0.0391 (3)−0.00105 (17)0.00834 (18)−0.00115 (17)

Geometric parameters (Å, °)

C1—C21.383 (3)C13—C141.494 (3)
C1—C61.399 (2)C14—H14C0.93 (3)
C1—N11.425 (2)C14—H14B0.97 (3)
C2—C31.381 (3)C14—H14A1.02 (3)
C2—H20.93C15—C201.369 (3)
C3—C41.372 (3)C15—C161.377 (3)
C3—H30.93C15—O21.400 (2)
C4—C51.377 (3)C16—C171.386 (3)
C4—H40.93C16—H160.93
C5—C61.388 (3)C17—C181.374 (3)
C5—H50.93C17—H170.93
C6—C71.500 (3)C18—C191.377 (3)
C7—H7A0.96C18—C211.513 (3)
C7—H7B0.96C19—C201.382 (3)
C7—H7C0.96C19—H190.93
C8—C91.382 (3)C20—H200.93
C8—C131.393 (3)C21—H21A0.96
C8—N21.432 (2)C21—H21B0.96
C9—C101.388 (3)C21—H21C0.96
C9—H90.93N1—P11.6268 (15)
C10—C111.369 (4)N1—H10.911 (15)
C10—H100.93N2—P11.6279 (15)
C11—C121.375 (3)N2—H210.899 (15)
C11—H110.93O1—P11.4692 (12)
C12—C131.390 (3)O2—P11.5964 (13)
C12—H120.93
C2—C1—C6120.19 (16)C13—C14—H14B111.0 (19)
C2—C1—N1120.32 (15)H14C—C14—H14B105 (3)
C6—C1—N1119.48 (16)C13—C14—H14A114.9 (17)
C3—C2—C1120.67 (18)H14C—C14—H14A106 (2)
C3—C2—H2119.7H14B—C14—H14A107 (2)
C1—C2—H2119.7C20—C15—C16120.46 (17)
C4—C3—C2119.9 (2)C20—C15—O2123.22 (17)
C4—C3—H3120.1C16—C15—O2116.30 (16)
C2—C3—H3120.1C15—C16—C17119.01 (19)
C3—C4—C5119.4 (2)C15—C16—H16120.5
C3—C4—H4120.3C17—C16—H16120.5
C5—C4—H4120.3C18—C17—C16121.9 (2)
C4—C5—C6122.25 (19)C18—C17—H17119
C4—C5—H5118.9C16—C17—H17119
C6—C5—H5118.9C17—C18—C19117.39 (19)
C5—C6—C1117.52 (18)C17—C18—C21121.3 (2)
C5—C6—C7121.31 (18)C19—C18—C21121.3 (2)
C1—C6—C7121.15 (17)C18—C19—C20122.0 (2)
C6—C7—H7A109.5C18—C19—H19119
C6—C7—H7B109.5C20—C19—H19119
H7A—C7—H7B109.5C15—C20—C19119.2 (2)
C6—C7—H7C109.5C15—C20—H20120.4
H7A—C7—H7C109.5C19—C20—H20120.4
H7B—C7—H7C109.5C18—C21—H21A109.5
C9—C8—C13120.81 (18)C18—C21—H21B109.5
C9—C8—N2120.30 (17)H21A—C21—H21B109.5
C13—C8—N2118.87 (16)C18—C21—H21C109.5
C8—C9—C10120.1 (2)H21A—C21—H21C109.5
C8—C9—H9119.9H21B—C21—H21C109.5
C10—C9—H9119.9C1—N1—P1123.77 (12)
C11—C10—C9119.7 (2)C1—N1—H1120.6 (13)
C11—C10—H10120.1P1—N1—H1115.4 (13)
C9—C10—H10120.1C8—N2—P1127.71 (12)
C10—C11—C12119.9 (2)C8—N2—H21113.0 (14)
C10—C11—H11120.1P1—N2—H21119.2 (14)
C12—C11—H11120.1C15—O2—P1124.67 (11)
C11—C12—C13121.9 (2)O1—P1—O2113.30 (7)
C11—C12—H12119O1—P1—N1118.95 (8)
C13—C12—H12119O2—P1—N196.87 (7)
C12—C13—C8117.46 (19)O1—P1—N2109.57 (7)
C12—C13—C14120.5 (2)O2—P1—N2110.16 (8)
C8—C13—C14122.06 (18)N1—P1—N2107.23 (7)
C13—C14—H14C112.0 (18)
C6—C1—C2—C3−1.1 (3)C15—C16—C17—C18−0.1 (3)
N1—C1—C2—C3179.94 (17)C16—C17—C18—C190.6 (3)
C1—C2—C3—C4−0.7 (3)C16—C17—C18—C21−178.7 (2)
C2—C3—C4—C51.3 (4)C17—C18—C19—C20−0.8 (3)
C3—C4—C5—C6−0.2 (4)C21—C18—C19—C20178.5 (2)
C4—C5—C6—C1−1.5 (3)C16—C15—C20—C190.0 (3)
C4—C5—C6—C7176.6 (2)O2—C15—C20—C19−178.57 (19)
C2—C1—C6—C52.1 (3)C18—C19—C20—C150.5 (3)
N1—C1—C6—C5−178.90 (17)C2—C1—N1—P139.1 (2)
C2—C1—C6—C7−175.95 (18)C6—C1—N1—P1−139.85 (15)
N1—C1—C6—C73.0 (3)C9—C8—N2—P145.5 (2)
C13—C8—C9—C10−0.6 (3)C13—C8—N2—P1−135.66 (15)
N2—C8—C9—C10178.22 (17)C20—C15—O2—P1−33.5 (2)
C8—C9—C10—C11−1.8 (3)C16—C15—O2—P1147.94 (14)
C9—C10—C11—C122.0 (3)C15—O2—P1—O162.76 (15)
C10—C11—C12—C130.2 (3)C15—O2—P1—N1−171.60 (13)
C11—C12—C13—C8−2.4 (3)C15—O2—P1—N2−60.38 (15)
C11—C12—C13—C14177.9 (2)C1—N1—P1—O1−75.73 (15)
C9—C8—C13—C122.6 (3)C1—N1—P1—O2162.81 (14)
N2—C8—C13—C12−176.18 (16)C1—N1—P1—N249.18 (16)
C9—C8—C13—C14−177.7 (2)C8—N2—P1—O1169.91 (14)
N2—C8—C13—C143.5 (3)C8—N2—P1—O2−64.80 (17)
C20—C15—C16—C17−0.2 (3)C8—N2—P1—N139.51 (17)
O2—C15—C16—C17178.44 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (2)2.02 (2)2.8963 (19)161 (2)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2779).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pourayoubi, M., Ghadimi, S., Ebrahimi Valmoozi, A. A. & Banan, A. R. (2009). Acta Cryst. E65, o1973. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography