PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m809.
Published online 2010 June 16. doi:  10.1107/S1600536810022300
PMCID: PMC3006770

Hexaaqua­manganese(II) 4,4′-(1,2-dihy­droxy­ethane-1,2-di­yl)dibenzoate monohydrate

Abstract

In the title compound, [Mn(H2O)6](C16H12O6)·H2O, the [Mn(H2O)6]2+ complex cation lies on a mirror plane, the 4,4′-(1,2-dihy­droxy­ethane-1,2-di­yl)dibenzoate anion is located on an inversion center and the solvent water mol­ecule also lies on a mirror plane. Extensive O—H(...)O hydrogen-bonding inter­actions between the cations, anions and water mol­ecules stabilize the three-dimensional network.

Related literature

For the intriguing architectures and potential applications of polymeric coordination networks, see: Carlucci et al. (2003 [triangle]); Rosi et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m809-scheme1.jpg

Experimental

Crystal data

  • [Mn(H2O)6](C16H12O6)·H2O
  • M r = 481.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m809-efi1.jpg
  • a = 6.0803 (6) Å
  • b = 20.643 (2) Å
  • c = 8.6610 (9) Å
  • β = 104.420 (1)°
  • V = 1052.84 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.69 mm−1
  • T = 298 K
  • 0.42 × 0.21 × 0.18 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.760, T max = 0.886
  • 5275 measured reflections
  • 1899 independent reflections
  • 1647 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.140
  • S = 1.23
  • 1899 reflections
  • 142 parameters
  • H-atom parameters constrained
  • Δρmax = 0.84 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022300/hy2318sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022300/hy2318Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Pingdingshan University for supporting this work.

supplementary crystallographic information

Comment

Current interest in polymeric coordination networks is rapidly expanding for their intriguing architectures (Carlucci et al., 2003) and potential applications (Rosi et al., 2003). We have reacted 1,2-bis(4-carboxyphenyl)-1,2-ethanediol with MnCl2 under hydrothermal conditions to obtain the title compound and its structure is reported here.

As illustrated in Fig. 1, the title compound contains one [Mn(H2O)6]2+ complex cation lying on a mirror plan, one 1,2-dihydroxyethane-1,2-bis(4-benzenecarboxylate) anion located on an inversion center and one solvent water molecule lying on a mirror plan. The carboxylate group lies in the plane of the benzene ring as indicated by the O1—C1—C2—C3 and O2—C1—C2—C7 torsion angles of -3.0 (6) and -1.2 (6)°. The benzene ring is nearly planar with maximum deviations from the mean plane being -0.003 (6) Å for C6. The cation, anion and solvent water molecule interact via O—H···O hydrogen bonds, consolidating the three-dimensional network (Fig. 2, Table 1).

Experimental

A mixture of MnCl2 (0.1 mmol, 0.013 g), 1,2-bis(4-carboxyphenyl)-1,2-ethanediol (0.1 mmol, 0.03 g) and 10 ml of H2O was sealed in a 20 ml Telflon-lined stainless steel vessel and heated at 303 K for 2 d. Colorless crystals were obtained when the solution was cooled to room temperature slowly.

Refinement

H atoms bound to C atoms were placed at calculated positions and were treated as riding on the parent atoms, with C—H = 0.93 (aromatic) and 0.98 (CH) Å and with Uiso(H) = 1.2Ueq(C). H atoms of hydroxyl group and water molecules were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H) = 1.2(1.5 for hydroxyl)Ueq(O).

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level. H atoms and water molecule are omitted for clarity. [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) x, 3/2-y, z.]
Fig. 2.
View of the three-dimensional network constructed by O—H···O hydrogen bonds (dashed lines). H atoms are omitted for clarity.

Crystal data

[Mn(H2O)6](C16H12O6)·H2OF(000) = 502
Mr = 481.31Dx = 1.518 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 2215 reflections
a = 6.0803 (6) Åθ = 2.5–24.0°
b = 20.643 (2) ŵ = 0.69 mm1
c = 8.6610 (9) ÅT = 298 K
β = 104.420 (1)°Block, colorless
V = 1052.84 (19) Å30.42 × 0.21 × 0.18 mm
Z = 2

Data collection

Bruker SMART 1000 CCD diffractometer1899 independent reflections
Radiation source: fine-focus sealed tube1647 reflections with I > 2σ(I)
graphiteRint = 0.024
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −7→6
Tmin = 0.760, Tmax = 0.886k = −24→22
5275 measured reflectionsl = −10→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.23w = 1/[σ2(Fo2) + (0.0292P)2 + 3.0592P] where P = (Fo2 + 2Fc2)/3
1899 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = −0.33 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.65486 (15)0.75000.46088 (10)0.0289 (3)
O11.0818 (5)0.64065 (16)1.2067 (4)0.0444 (8)
O21.3265 (5)0.64967 (19)1.0567 (4)0.0567 (10)
O30.6710 (6)0.42818 (15)0.5229 (4)0.0472 (9)
H30.75380.41030.60040.071*
O40.2836 (6)0.75000.3483 (5)0.0296 (9)
H4C0.21680.71660.30150.036*
O51.0130 (7)0.75000.5635 (5)0.0533 (14)
H5C1.08850.75000.49310.064*
H5D1.10620.75000.65480.064*
O60.5811 (6)0.67978 (16)0.6304 (4)0.0477 (8)
H6C0.50290.64760.58610.057*
H6D0.50950.69850.69040.057*
O70.6863 (5)0.67266 (18)0.2996 (4)0.0548 (10)
H7C0.80610.66290.27100.066*
H7D0.57240.66530.22200.066*
O80.3346 (10)0.75000.8464 (6)0.090 (2)
H8C0.33230.71670.90350.109*
C11.1422 (7)0.6306 (2)1.0792 (5)0.0377 (11)
C20.9858 (7)0.5932 (2)0.9471 (5)0.0321 (10)
C30.7845 (7)0.5675 (2)0.9661 (5)0.0364 (10)
H3A0.74150.57471.06050.044*
C40.6454 (7)0.5311 (2)0.8455 (5)0.0371 (10)
H40.50980.51440.85970.045*
C50.7062 (7)0.5195 (2)0.7053 (5)0.0335 (10)
C60.9078 (8)0.5454 (2)0.6850 (5)0.0398 (11)
H60.95050.53810.59060.048*
C71.0457 (7)0.5820 (2)0.8053 (5)0.0387 (11)
H71.18020.59930.79050.046*
C80.5518 (8)0.4795 (2)0.5750 (5)0.0365 (10)
H80.42860.46130.61600.044*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0245 (5)0.0337 (5)0.0272 (5)0.0000.0039 (4)0.000
O10.0364 (17)0.051 (2)0.0399 (18)0.0007 (15)−0.0016 (14)−0.0157 (15)
O20.0333 (19)0.078 (3)0.052 (2)−0.0144 (18)−0.0013 (15)−0.0261 (19)
O30.053 (2)0.0349 (18)0.0454 (19)0.0047 (15)−0.0045 (15)−0.0064 (15)
O40.026 (2)0.029 (2)0.031 (2)0.0000.0003 (16)0.000
O50.025 (2)0.100 (4)0.032 (2)0.0000.0016 (19)0.000
O60.058 (2)0.0403 (19)0.0434 (19)−0.0019 (16)0.0097 (16)0.0080 (15)
O70.0285 (17)0.078 (3)0.053 (2)0.0039 (17)0.0007 (15)−0.0328 (19)
O80.065 (4)0.169 (7)0.037 (3)0.0000.012 (3)0.000
C10.030 (2)0.037 (3)0.038 (3)0.009 (2)−0.0053 (19)−0.011 (2)
C20.028 (2)0.029 (2)0.032 (2)0.0044 (18)−0.0058 (18)−0.0058 (18)
C30.037 (2)0.037 (2)0.032 (2)−0.001 (2)0.0018 (18)−0.0065 (19)
C40.033 (2)0.036 (2)0.038 (2)−0.0057 (19)−0.0007 (19)−0.003 (2)
C50.030 (2)0.028 (2)0.035 (2)0.0017 (18)−0.0063 (18)−0.0048 (18)
C60.038 (3)0.044 (3)0.034 (2)0.002 (2)0.0021 (19)−0.012 (2)
C70.027 (2)0.045 (3)0.041 (3)−0.001 (2)0.0030 (19)−0.012 (2)
C80.037 (2)0.033 (2)0.032 (2)0.001 (2)−0.0043 (19)−0.0060 (19)

Geometric parameters (Å, °)

Mn1—O52.137 (4)O7—H7D0.8500
Mn1—O72.161 (3)O8—H8C0.8500
Mn1—O7i2.161 (3)C1—C21.506 (6)
Mn1—O6i2.187 (3)C2—C31.381 (6)
Mn1—O62.187 (3)C2—C71.384 (6)
Mn1—O42.225 (4)C3—C41.390 (6)
O1—C11.265 (5)C3—H3A0.9300
O2—C11.248 (6)C4—C51.375 (6)
O3—C81.419 (5)C4—H40.9300
O3—H30.8200C5—C61.387 (6)
O4—H4C0.8500C5—C81.520 (6)
O5—H5C0.8500C6—C71.388 (6)
O5—H5D0.8500C6—H60.9300
O6—H6C0.8500C7—H70.9300
O6—H6D0.8500C8—C8ii1.548 (8)
O7—H7C0.8500C8—H80.9800
O5—Mn1—O791.37 (12)O2—C1—C2117.7 (4)
O5—Mn1—O7i91.37 (12)O1—C1—C2118.8 (4)
O7—Mn1—O7i95.3 (2)C3—C2—C7118.6 (4)
O5—Mn1—O6i94.52 (13)C3—C2—C1121.1 (4)
O7—Mn1—O6i171.61 (14)C7—C2—C1120.2 (4)
O7i—Mn1—O6i90.57 (14)C2—C3—C4120.6 (4)
O5—Mn1—O694.52 (13)C2—C3—H3A119.7
O7—Mn1—O690.57 (14)C4—C3—H3A119.7
O7i—Mn1—O6171.61 (14)C5—C4—C3120.7 (4)
O6i—Mn1—O683.01 (19)C5—C4—H4119.6
O5—Mn1—O4178.63 (17)C3—C4—H4119.6
O7—Mn1—O487.71 (11)C4—C5—C6119.0 (4)
O7i—Mn1—O487.71 (11)C4—C5—C8119.9 (4)
O6i—Mn1—O486.50 (12)C6—C5—C8121.1 (4)
O6—Mn1—O486.50 (12)C5—C6—C7120.1 (4)
C8—O3—H3109.5C5—C6—H6119.9
Mn1—O4—H4C121.4C7—C6—H6119.9
Mn1—O5—H5C112.2C2—C7—C6120.9 (4)
Mn1—O5—H5D139.5C2—C7—H7119.5
H5C—O5—H5D108.3C6—C7—H7119.5
Mn1—O6—H6C113.5O3—C8—C5111.9 (3)
Mn1—O6—H6D109.4O3—C8—C8ii105.9 (4)
H6C—O6—H6D108.4C5—C8—C8ii111.9 (4)
Mn1—O7—H7C125.7O3—C8—H8109.0
Mn1—O7—H7D117.3C5—C8—H8109.0
H7C—O7—H7D108.4C8ii—C8—H8109.0
O2—C1—O1123.5 (4)
O2—C1—C2—C3176.5 (4)C4—C5—C6—C70.3 (7)
O1—C1—C2—C3−3.0 (6)C8—C5—C6—C7179.7 (4)
O2—C1—C2—C7−1.2 (6)C3—C2—C7—C6−0.5 (7)
O1—C1—C2—C7179.3 (4)C1—C2—C7—C6177.3 (4)
C7—C2—C3—C40.1 (7)C5—C6—C7—C20.3 (7)
C1—C2—C3—C4−177.6 (4)C4—C5—C8—O3−128.0 (4)
C2—C3—C4—C50.5 (7)C6—C5—C8—O352.5 (6)
C3—C4—C5—C6−0.7 (7)C4—C5—C8—C8ii113.3 (6)
C3—C4—C5—C8179.9 (4)C6—C5—C8—C8ii−66.1 (6)

Symmetry codes: (i) x, −y+3/2, z; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O1iii0.822.022.830 (5)172
O4—H4C···O1iv0.851.862.712 (4)177
O5—H5C···O4v0.851.932.777 (6)175
O5—H5D···O8v0.851.882.728 (7)175
O6—H6C···O3ii0.851.992.840 (5)178
O6—H6D···O80.852.193.040 (6)178
O7—H7C···O1vi0.851.952.799 (5)180
O7—H7D···O2iv0.851.822.673 (4)180
O8—H8C···O2vii0.851.922.767 (5)172

Symmetry codes: (iii) −x+2, −y+1, −z+2; (iv) x−1, y, z−1; (v) x+1, y, z; (ii) −x+1, −y+1, −z+1; (vi) x, y, z−1; (vii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2318).

References

  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Carlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev.246, 247–289.
  • Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O’Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography