PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m733.
Published online 2010 June 5. doi:  10.1107/S1600536810020015
PMCID: PMC3006760

Chlorido(2,3,7,8,12,13,17,18-octa­ethyl­porphyrinato)iron(III) dichloro­methane sesquisolvate

Abstract

The title mol­ecule, [Fe(C36H44N4)Cl]·1.5CH2Cl2, is a high-spin square-pyramidal iron(III) porphyrinate with an average value for the equatorial Fe—N bond lengths of 2.065 (3) Å and an axial Fe—Cl distance of 2.2430 (13) Å. The iron cation is displaced by 0.518 (1) Å from the 24-atom mean plane of the porphyrin ring. These values are typical for high-spin iron(III) porphyrinates.

Related literature

For a review of porphyrinates, see: Scheidt (2000 [triangle]). Other crystalline phases containing the [Fe(OEP)Cl] moiety (OEP = octa­ethyl­porphyrin) have been reported by Ernst et al. (1977 [triangle]); Olmstead et al. (1999 [triangle]); Senge (2005 [triangle]). For synthetic details, see: Adler et al. (1970 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m733-scheme1.jpg

Experimental

Crystal data

  • [Fe(C36H44N4)Cl]·1.5CH2Cl2
  • M r = 751.44
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m733-efi1.jpg
  • a = 10.062 (6) Å
  • b = 13.767 (5) Å
  • c = 14.754 (5) Å
  • α = 66.46 (2)°
  • β = 80.55 (2)°
  • γ = 76.10 (2)°
  • V = 1813.5 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.74 mm−1
  • T = 293 K
  • 0.20 × 0.11 × 0.08 mm

Data collection

  • Enraf–Nonius FAST area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995 [triangle]) T min = 0.866, T max = 0.943
  • 9130 measured reflections
  • 9130 independent reflections
  • 7073 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.148
  • S = 1.05
  • 9130 reflections
  • 441 parameters
  • H-atom parameters constrained
  • Δρmax = 1.02 e Å−3
  • Δρmin = −0.69 e Å−3

Data collection: MADNES (Messerschmidt & Pflugrath, 1987 [triangle]); cell refinement: MADNES; data reduction: MADNES; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810020015/wm2352sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020015/wm2352Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Institutes of Health (grant GM-38401) for support.

supplementary crystallographic information

Comment

The title compound (in the reported crystalline form) has been used for many years in the principal author's laboratory as a convenient starting material for many studies of porphyrin derivatives. The square-pyramidal coordination of the central irn(III) atom, with an average equatorial Fe—N distance of 2.065 (3) Å and 2.2430 (13) Å for the axial Fe—Cl distance, is typical for high-spin chloride derivatives (Scheidt, 2000). The iron atom is displaced by 0.518 (1) Å from the 24 atom mean plane and 0.468 (1) Å from the plane of the four nitrogen atoms. The core has a modest saddled conformation. The conformation of the the molecule with its eight peripheral ethyl groups is unusual with all eight groups pointing away from the axial chloride ligand (see Fig. 1), resulting in a molecule with a spider-like shape. This geometry leads to well-separated iron atoms with the closest Fe···Fe separation of 9.711 (3) Å that is larger than typical for OEP (OEP = octaethylporphyrin) derivatives.

Three different crystalline species containing the [Fe(OEP)Cl] moiety have been previously reported by Ernst et al. (1977), Olmstead et al. (1999) and Senge (2005). In comparison with the current derivative they have a different conformation of the peripheral ethyl groups.

Experimental

Iron(II) chloride was purchased from Fisher and H2OEP from Midcentury Chemicals. [Fe(OEP)Cl] was prepared by reaction of iron(II) chloride in dimethyl formamide as described by Adler et al. (1970)). Single crystals were obtained by slow evaporation of methylene chloride solutions.

Refinement

The H atoms attached to C atoms of the porphyrin ring were positioned geometrically and allowed to ride on their parent atoms, with a C—H distance of 0.93 Å and Uiso(H) = 1.2Ueq(C). Methylene and methyl H atoms were likewise positioned geometrically and refined as riding atoms, with C—H = 0.97 Å (methylene) and C—H = 0.96 Å (methyl) and Uiso(H) = 1.2Ueq(C).

One of the methylene chloride molecules of crystallization is disordered across the inversion center at [0.5, 0, 1] and has been modelled with half occupancy atoms. The other methylene chloride occupies a general position in the lattice and was modelled at full occupancy.

Figures

Fig. 1.
: ORTEP diagram for [Fe(OEP)Cl] with atom labels and displacement ellipsoids at the 50% probability level. Methylene chloride solvent molecules and hydrogen atoms have been removed for clarity.

Crystal data

[Fe(C36H44N4)Cl]·1.5CH2Cl2Z = 2
Mr = 751.44F(000) = 788
Triclinic, P1Dx = 1.376 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.062 (6) ÅCell parameters from 250 reflections
b = 13.767 (5) Åθ = 2.5–26.0°
c = 14.754 (5) ŵ = 0.74 mm1
α = 66.46 (2)°T = 293 K
β = 80.55 (2)°Needle, dark purple
γ = 76.10 (2)°0.20 × 0.11 × 0.08 mm
V = 1813.5 (14) Å3

Data collection

Enraf–Nonius FAST area-detector diffractometer9130 independent reflections
Radiation source: rotating anode X-ray tube7073 reflections with I > 2σ(I)
graphiteRint = 0.060
Detector resolution: 9.23 pixels mm-1θmax = 29.8°, θmin = 2.4°
Ellipsoid–mask fitting scansh = −13→14
Absorption correction: multi-scan (SADABS; Sheldrick, 1995)k = −16→19
Tmin = 0.866, Tmax = 0.943l = 0→20
9130 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0448P)2 + 5.0201P] where P = (Fo2 + 2Fc2)/3
9130 reflections(Δ/σ)max = 0.001
441 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = −0.68 e Å3

Special details

Experimental. Diffraction data were measured with an Enraf Nonius FAST area detector to 59.54 deg in 2 theta. With the hardware and software supplied for the diffractometer, the data collection process provides substantial redundancy but not necessarily completion up to the limiting resolution. At a resolution of 0.83 Å (52 deg in 2 theta) essentially full coverage of data were met. Successful and suitable refinement of the structure supports this.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Fe0.25435 (4)0.37510 (3)0.32355 (3)0.01287 (10)
Cl10.08498 (7)0.28040 (6)0.37840 (6)0.02095 (15)
N10.3046 (2)0.38438 (18)0.44976 (17)0.0134 (4)
N20.1490 (2)0.53203 (19)0.28837 (18)0.0153 (5)
N30.2765 (2)0.40653 (19)0.17326 (17)0.0155 (5)
N40.4286 (2)0.25643 (19)0.33618 (18)0.0157 (5)
CA10.3884 (3)0.3059 (2)0.5196 (2)0.0148 (5)
CA20.2377 (3)0.4580 (2)0.4922 (2)0.0138 (5)
CA30.1014 (3)0.5843 (2)0.3531 (2)0.0145 (5)
CA40.0834 (3)0.5949 (2)0.2033 (2)0.0157 (5)
CA50.1976 (3)0.4875 (2)0.1020 (2)0.0166 (5)
CA60.3542 (3)0.3396 (2)0.1268 (2)0.0173 (5)
CA70.4799 (3)0.2059 (2)0.2702 (2)0.0168 (5)
CA80.4961 (3)0.1942 (2)0.4208 (2)0.0158 (5)
CB10.3752 (3)0.3307 (2)0.6076 (2)0.0158 (5)
CB20.2824 (3)0.4256 (2)0.5899 (2)0.0147 (5)
CB30.0033 (3)0.6824 (2)0.3080 (2)0.0148 (5)
CB4−0.0072 (3)0.6885 (2)0.2142 (2)0.0179 (6)
CB50.2272 (3)0.4728 (2)0.0086 (2)0.0191 (6)
CB60.3255 (3)0.3818 (2)0.0240 (2)0.0200 (6)
CB70.5800 (3)0.1091 (2)0.3153 (2)0.0170 (5)
CB80.5911 (3)0.1035 (2)0.4079 (2)0.0174 (5)
C110.4545 (3)0.2652 (3)0.6968 (2)0.0203 (6)
H11A0.46250.18910.71050.024*
H11B0.40490.27950.75370.024*
C210.2368 (3)0.4896 (2)0.6554 (2)0.0181 (6)
H21A0.25170.44200.72370.022*
H21B0.13920.51900.65140.022*
C31−0.0673 (3)0.7605 (2)0.3557 (2)0.0184 (6)
H31A−0.09600.72040.42400.022*
H31B−0.14920.80320.32190.022*
C41−0.0905 (3)0.7768 (2)0.1356 (2)0.0215 (6)
H41A−0.16840.81230.16670.026*
H41B−0.12560.74570.09810.026*
C510.1646 (4)0.5492 (3)−0.0860 (2)0.0246 (6)
H51A0.06830.5753−0.07140.030*
H51B0.17030.5109−0.12960.030*
C610.4006 (4)0.3357 (3)−0.0506 (2)0.0261 (7)
H61A0.34540.3607−0.10660.031*
H61B0.41260.2576−0.02090.031*
C710.6548 (3)0.0321 (2)0.2667 (2)0.0215 (6)
H71A0.59180.02420.22800.026*
H71B0.6832−0.03800.31790.026*
C810.6882 (3)0.0236 (2)0.4824 (2)0.0218 (6)
H81A0.7153−0.04260.46980.026*
H81B0.64170.00680.54830.026*
C120.5981 (3)0.2906 (3)0.6824 (3)0.0300 (7)
H12A0.64590.24660.74090.045*
H12B0.59060.36540.67070.045*
H12C0.64800.27570.62660.045*
C220.3140 (4)0.5818 (3)0.6261 (3)0.0337 (8)
H22A0.27970.62220.66790.051*
H22B0.30090.62840.55820.051*
H22C0.41020.55280.63360.051*
C320.0221 (3)0.8363 (3)0.3540 (3)0.0260 (7)
H32A−0.03040.88660.38260.039*
H32B0.05300.87510.28670.039*
H32C0.10010.79510.39150.039*
C42−0.0075 (4)0.8600 (3)0.0652 (3)0.0347 (8)
H42A−0.06400.91390.01480.052*
H42B0.07040.82510.03480.052*
H42C0.02360.89370.10150.052*
C520.2359 (5)0.6451 (3)−0.1389 (3)0.0359 (8)
H52A0.19080.6931−0.19770.054*
H52B0.33010.6200−0.15670.054*
H52C0.23160.6828−0.09580.054*
C620.5393 (4)0.3664 (4)−0.0875 (3)0.0462 (11)
H62A0.58470.3317−0.13230.069*
H62B0.59370.3437−0.03230.069*
H62C0.52770.4433−0.12140.069*
C720.7802 (4)0.0664 (3)0.1995 (3)0.0315 (8)
H72A0.82640.01090.17530.047*
H72B0.84140.07800.23620.047*
H72C0.75230.13210.14460.047*
C820.8159 (3)0.0668 (3)0.4785 (3)0.0318 (8)
H82A0.87860.01170.52370.048*
H82B0.79020.12860.49700.048*
H82C0.85940.08730.41250.048*
CM10.4754 (3)0.2172 (2)0.5060 (2)0.0155 (5)
HM10.52490.16820.55930.019*
CM20.1418 (3)0.5494 (2)0.4479 (2)0.0155 (5)
HM20.10090.59110.48520.019*
CM30.1055 (3)0.5733 (2)0.1173 (2)0.0180 (5)
HM30.05340.62090.06490.022*
CM40.4449 (3)0.2450 (2)0.1729 (2)0.0189 (6)
HM40.48630.20380.13530.023*
CS10.1683 (4)0.1052 (3)0.2470 (3)0.0346 (8)
HS1A0.09140.07800.29100.042*
HS1B0.20040.14960.27260.042*
Cl20.30036 (11)−0.00366 (8)0.24654 (9)0.0445 (2)
Cl30.11326 (13)0.18428 (11)0.12904 (9)0.0579 (3)
CS20.5781 (11)−0.0403 (7)1.0177 (9)0.052 (3)0.50
HS2A0.5710−0.07521.08950.063*0.50
HS2B0.6417−0.08950.99130.063*0.50
Cl40.6407 (3)0.0771 (2)0.9837 (2)0.0636 (7)0.50
Cl50.4123 (3)−0.0124 (4)0.9724 (3)0.0754 (9)0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe0.01256 (18)0.01266 (19)0.01360 (19)−0.00042 (14)−0.00143 (14)−0.00611 (14)
Cl10.0188 (3)0.0219 (3)0.0255 (4)−0.0070 (3)0.0022 (3)−0.0121 (3)
N10.0138 (10)0.0130 (10)0.0146 (11)0.0001 (8)−0.0010 (9)−0.0079 (9)
N20.0156 (11)0.0150 (11)0.0158 (11)−0.0025 (9)−0.0014 (9)−0.0065 (9)
N30.0176 (11)0.0171 (11)0.0129 (11)−0.0015 (9)−0.0006 (9)−0.0080 (9)
N40.0143 (11)0.0163 (11)0.0170 (12)−0.0008 (9)−0.0013 (9)−0.0080 (9)
CA10.0139 (12)0.0146 (12)0.0145 (13)−0.0016 (10)−0.0016 (10)−0.0046 (10)
CA20.0104 (11)0.0151 (12)0.0178 (13)−0.0021 (10)0.0004 (10)−0.0090 (10)
CA30.0123 (12)0.0140 (12)0.0176 (13)−0.0024 (10)0.0016 (10)−0.0075 (10)
CA40.0138 (12)0.0131 (12)0.0181 (13)−0.0009 (10)−0.0015 (10)−0.0044 (10)
CA50.0181 (13)0.0180 (13)0.0136 (13)−0.0041 (11)−0.0017 (10)−0.0052 (11)
CA60.0187 (13)0.0179 (13)0.0166 (13)−0.0037 (11)0.0000 (11)−0.0083 (11)
CA70.0151 (12)0.0169 (13)0.0199 (14)−0.0025 (10)0.0025 (10)−0.0103 (11)
CA80.0141 (12)0.0124 (12)0.0197 (14)−0.0016 (10)−0.0008 (10)−0.0054 (10)
CB10.0158 (13)0.0178 (13)0.0149 (13)−0.0055 (10)0.0002 (10)−0.0065 (11)
CB20.0146 (12)0.0170 (13)0.0136 (13)−0.0042 (10)0.0012 (10)−0.0071 (10)
CB30.0110 (11)0.0118 (12)0.0198 (14)−0.0005 (10)0.0004 (10)−0.0059 (10)
CB40.0150 (13)0.0140 (13)0.0210 (14)−0.0009 (10)−0.0025 (11)−0.0036 (11)
CB50.0239 (14)0.0194 (14)0.0154 (13)−0.0055 (11)−0.0024 (11)−0.0069 (11)
CB60.0259 (15)0.0214 (14)0.0161 (14)−0.0052 (12)−0.0004 (11)−0.0106 (11)
CB70.0142 (12)0.0131 (12)0.0229 (14)−0.0022 (10)−0.0007 (11)−0.0064 (11)
CB80.0140 (12)0.0149 (13)0.0213 (14)−0.0011 (10)−0.0016 (11)−0.0057 (11)
C110.0222 (14)0.0226 (14)0.0147 (13)−0.0006 (12)−0.0038 (11)−0.0069 (11)
C210.0237 (14)0.0184 (13)0.0148 (13)−0.0036 (11)−0.0011 (11)−0.0093 (11)
C310.0159 (13)0.0154 (13)0.0238 (15)0.0010 (10)−0.0004 (11)−0.0101 (11)
C410.0233 (15)0.0140 (13)0.0212 (15)0.0066 (11)−0.0043 (12)−0.0052 (11)
C510.0324 (17)0.0251 (15)0.0182 (15)−0.0052 (13)−0.0075 (13)−0.0081 (12)
C610.0331 (17)0.0305 (17)0.0199 (15)−0.0029 (14)−0.0015 (13)−0.0168 (13)
C710.0218 (14)0.0166 (14)0.0268 (16)0.0012 (11)0.0011 (12)−0.0129 (12)
C810.0173 (13)0.0182 (14)0.0267 (16)0.0049 (11)−0.0041 (12)−0.0091 (12)
C120.0213 (15)0.040 (2)0.0289 (18)−0.0022 (14)−0.0101 (13)−0.0128 (15)
C220.044 (2)0.0336 (19)0.036 (2)−0.0178 (16)0.0046 (16)−0.0229 (16)
C320.0262 (16)0.0179 (14)0.0363 (18)−0.0034 (12)0.0001 (14)−0.0143 (13)
C420.049 (2)0.0223 (16)0.0245 (17)−0.0078 (15)−0.0041 (16)0.0009 (13)
C520.056 (2)0.0276 (18)0.0210 (17)−0.0121 (17)−0.0078 (16)−0.0014 (14)
C620.042 (2)0.065 (3)0.041 (2)−0.016 (2)0.0152 (19)−0.034 (2)
C720.0282 (17)0.0280 (17)0.0352 (19)0.0034 (14)0.0086 (14)−0.0181 (15)
C820.0174 (15)0.043 (2)0.0323 (19)−0.0021 (14)−0.0074 (13)−0.0120 (16)
CM10.0132 (12)0.0149 (12)0.0172 (13)0.0005 (10)−0.0034 (10)−0.0058 (10)
CM20.0142 (12)0.0156 (13)0.0179 (13)−0.0009 (10)0.0001 (10)−0.0092 (11)
CM30.0186 (13)0.0173 (13)0.0173 (14)−0.0016 (11)−0.0042 (11)−0.0057 (11)
CM40.0171 (13)0.0188 (14)0.0220 (14)−0.0019 (11)0.0008 (11)−0.0109 (12)
CS10.0310 (18)0.039 (2)0.036 (2)−0.0044 (16)0.0009 (15)−0.0191 (17)
Cl20.0368 (5)0.0345 (5)0.0597 (7)−0.0025 (4)−0.0048 (5)−0.0173 (5)
Cl30.0496 (6)0.0580 (7)0.0504 (7)−0.0108 (5)−0.0205 (5)0.0024 (5)
CS20.066 (7)0.023 (4)0.066 (7)−0.003 (4)0.004 (5)−0.022 (4)
Cl40.0684 (17)0.0590 (16)0.0764 (19)−0.0064 (14)−0.0037 (15)−0.0429 (15)
Cl50.0595 (18)0.110 (3)0.073 (2)−0.010 (2)−0.0058 (15)−0.055 (2)

Geometric parameters (Å, °)

Fe—N22.060 (3)C41—H41A0.9700
Fe—N42.066 (3)C41—H41B0.9700
Fe—N12.066 (2)C51—C521.521 (5)
Fe—N32.067 (2)C51—H51A0.9700
Fe—Cl12.2430 (13)C51—H51B0.9700
N1—CA11.378 (4)C61—C621.507 (5)
N1—CA21.383 (3)C61—H61A0.9700
N2—CA41.375 (4)C61—H61B0.9700
N2—CA31.376 (4)C71—C721.516 (5)
N3—CA51.375 (4)C71—H71A0.9700
N3—CA61.383 (4)C71—H71B0.9700
N4—CA71.378 (4)C81—C821.524 (5)
N4—CA81.378 (4)C81—H81A0.9700
CA1—CM11.388 (4)C81—H81B0.9700
CA1—CB11.447 (4)C12—H12A0.9600
CA2—CM21.381 (4)C12—H12B0.9600
CA2—CB21.443 (4)C12—H12C0.9600
CA3—CM21.382 (4)C22—H22A0.9600
CA3—CB31.448 (4)C22—H22B0.9600
CA4—CM31.386 (4)C22—H22C0.9600
CA4—CB41.440 (4)C32—H32A0.9600
CA5—CM31.388 (4)C32—H32B0.9600
CA5—CB51.444 (4)C32—H32C0.9600
CA6—CM41.385 (4)C42—H42A0.9600
CA6—CB61.443 (4)C42—H42B0.9600
CA7—CM41.390 (4)C42—H42C0.9600
CA7—CB71.449 (4)C52—H52A0.9600
CA8—CM11.387 (4)C52—H52B0.9600
CA8—CB81.437 (4)C52—H52C0.9600
CB1—CB21.366 (4)C62—H62A0.9600
CB1—C111.495 (4)C62—H62B0.9600
CB2—C211.504 (4)C62—H62C0.9600
CB3—CB41.371 (4)C72—H72A0.9600
CB3—C311.494 (4)C72—H72B0.9600
CB4—C411.493 (4)C72—H72C0.9600
CB5—CB61.360 (4)C82—H82A0.9600
CB5—C511.500 (4)C82—H82B0.9600
CB6—C611.497 (4)C82—H82C0.9600
CB7—CB81.359 (4)CM1—HM10.9300
CB7—C711.501 (4)CM2—HM20.9300
CB8—C811.498 (4)CM3—HM30.9300
C11—C121.529 (5)CM4—HM40.9300
C11—H11A0.9700CS1—Cl31.742 (4)
C11—H11B0.9700CS1—Cl21.749 (4)
C21—C221.525 (4)CS1—HS1A0.9700
C21—H21A0.9700CS1—HS1B0.9700
C21—H21B0.9700CS2—Cl41.732 (10)
C31—C321.524 (4)CS2—Cl51.798 (12)
C31—H31A0.9700CS2—HS2A0.9700
C31—H31B0.9700CS2—HS2B0.9700
C41—C421.521 (5)
N2—Fe—N4154.50 (10)CB5—C51—H51A109.2
N2—Fe—N187.08 (10)C52—C51—H51A109.2
N4—Fe—N186.96 (10)CB5—C51—H51B109.2
N2—Fe—N387.05 (10)C52—C51—H51B109.2
N4—Fe—N387.14 (10)H51A—C51—H51B107.9
N1—Fe—N3153.12 (10)CB6—C61—C62113.0 (3)
N2—Fe—Cl1102.63 (8)CB6—C61—H61A109.0
N4—Fe—Cl1102.87 (8)C62—C61—H61A109.0
N1—Fe—Cl1103.92 (7)CB6—C61—H61B109.0
N3—Fe—Cl1102.96 (7)C62—C61—H61B109.0
CA1—N1—CA2105.7 (2)H61A—C61—H61B107.8
CA1—N1—Fe126.55 (18)CB7—C71—C72114.3 (3)
CA2—N1—Fe126.22 (18)CB7—C71—H71A108.7
CA4—N2—CA3105.6 (2)C72—C71—H71A108.7
CA4—N2—Fe126.10 (19)CB7—C71—H71B108.7
CA3—N2—Fe126.47 (19)C72—C71—H71B108.7
CA5—N3—CA6105.4 (2)H71A—C71—H71B107.6
CA5—N3—Fe126.67 (19)CB8—C81—C82111.8 (3)
CA6—N3—Fe126.9 (2)CB8—C81—H81A109.3
CA7—N4—CA8105.4 (2)C82—C81—H81A109.3
CA7—N4—Fe126.25 (19)CB8—C81—H81B109.3
CA8—N4—Fe126.63 (19)C82—C81—H81B109.3
N1—CA1—CM1124.4 (3)H81A—C81—H81B107.9
N1—CA1—CB1110.5 (2)C11—C12—H12A109.5
CM1—CA1—CB1125.1 (3)C11—C12—H12B109.5
CM2—CA2—N1125.2 (3)H12A—C12—H12B109.5
CM2—CA2—CB2124.7 (3)C11—C12—H12C109.5
N1—CA2—CB2110.1 (2)H12A—C12—H12C109.5
N2—CA3—CM2125.1 (3)H12B—C12—H12C109.5
N2—CA3—CB3110.7 (2)C21—C22—H22A109.5
CM2—CA3—CB3124.2 (3)C21—C22—H22B109.5
N2—CA4—CM3124.7 (3)H22A—C22—H22B109.5
N2—CA4—CB4110.7 (3)C21—C22—H22C109.5
CM3—CA4—CB4124.6 (3)H22A—C22—H22C109.5
N3—CA5—CM3124.3 (3)H22B—C22—H22C109.5
N3—CA5—CB5110.8 (3)C31—C32—H32A109.5
CM3—CA5—CB5124.9 (3)C31—C32—H32B109.5
N3—CA6—CM4124.7 (3)H32A—C32—H32B109.5
N3—CA6—CB6110.2 (3)C31—C32—H32C109.5
CM4—CA6—CB6125.1 (3)H32A—C32—H32C109.5
N4—CA7—CM4124.7 (3)H32B—C32—H32C109.5
N4—CA7—CB7110.4 (3)C41—C42—H42A109.5
CM4—CA7—CB7124.9 (3)C41—C42—H42B109.5
N4—CA8—CM1124.2 (3)H42A—C42—H42B109.5
N4—CA8—CB8110.7 (3)C41—C42—H42C109.5
CM1—CA8—CB8125.1 (3)H42A—C42—H42C109.5
CB2—CB1—CA1106.5 (2)H42B—C42—H42C109.5
CB2—CB1—C11128.5 (3)C51—C52—H52A109.5
CA1—CB1—C11125.0 (3)C51—C52—H52B109.5
CB1—CB2—CA2107.1 (2)H52A—C52—H52B109.5
CB1—CB2—C21128.1 (3)C51—C52—H52C109.5
CA2—CB2—C21124.7 (3)H52A—C52—H52C109.5
CB4—CB3—CA3106.1 (2)H52B—C52—H52C109.5
CB4—CB3—C31128.4 (3)C61—C62—H62A109.5
CA3—CB3—C31125.5 (3)C61—C62—H62B109.5
CB3—CB4—CA4106.9 (2)H62A—C62—H62B109.5
CB3—CB4—C41127.5 (3)C61—C62—H62C109.5
CA4—CB4—C41125.6 (3)H62A—C62—H62C109.5
CB6—CB5—CA5106.5 (3)H62B—C62—H62C109.5
CB6—CB5—C51128.7 (3)C71—C72—H72A109.5
CA5—CB5—C51124.8 (3)C71—C72—H72B109.5
CB5—CB6—CA6107.1 (3)H72A—C72—H72B109.5
CB5—CB6—C61128.2 (3)C71—C72—H72C109.5
CA6—CB6—C61124.5 (3)H72A—C72—H72C109.5
CB8—CB7—CA7106.5 (3)H72B—C72—H72C109.5
CB8—CB7—C71128.0 (3)C81—C82—H82A109.5
CA7—CB7—C71125.5 (3)C81—C82—H82B109.5
CB7—CB8—CA8107.0 (3)H82A—C82—H82B109.5
CB7—CB8—C81128.1 (3)C81—C82—H82C109.5
CA8—CB8—C81124.8 (3)H82A—C82—H82C109.5
CB1—C11—C12112.0 (3)H82B—C82—H82C109.5
CB1—C11—H11A109.2CA8—CM1—CA1126.6 (3)
C12—C11—H11A109.2CA8—CM1—HM1116.7
CB1—C11—H11B109.2CA1—CM1—HM1116.7
C12—C11—H11B109.2CA2—CM2—CA3125.6 (3)
H11A—C11—H11B107.9CA2—CM2—HM2117.2
CB2—C21—C22112.0 (3)CA3—CM2—HM2117.2
CB2—C21—H21A109.2CA4—CM3—CA5126.3 (3)
C22—C21—H21A109.2CA4—CM3—HM3116.8
CB2—C21—H21B109.2CA5—CM3—HM3116.8
C22—C21—H21B109.2CA6—CM4—CA7126.0 (3)
H21A—C21—H21B107.9CA6—CM4—HM4117.0
CB3—C31—C32113.6 (2)CA7—CM4—HM4117.0
CB3—C31—H31A108.9Cl3—CS1—Cl2112.1 (2)
C32—C31—H31A108.9Cl3—CS1—HS1A109.2
CB3—C31—H31B108.9Cl2—CS1—HS1A109.2
C32—C31—H31B108.9Cl3—CS1—HS1B109.2
H31A—C31—H31B107.7Cl2—CS1—HS1B109.2
CB4—C41—C42112.3 (3)HS1A—CS1—HS1B107.9
CB4—C41—H41A109.2Cl4—CS2—Cl5111.1 (6)
C42—C41—H41A109.2Cl4—CS2—HS2A109.4
CB4—C41—H41B109.2Cl5—CS2—HS2A109.4
C42—C41—H41B109.2Cl4—CS2—HS2B109.4
H41A—C41—H41B107.9Cl5—CS2—HS2B109.4
CB5—C51—C52112.2 (3)HS2A—CS2—HS2B108.0

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2352).

References

  • Adler, A. D., Longo, F. R., Kampas, F. & Kim, J. (1970). J. Inorg. Nucl. Chem.32, 2443–2444.
  • Ernst, J., Subramanian, J. & Fuhrhop, J.-H. (1977). Z. Naturforsch. Teil A, 32, 1129–1136.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Messerschmidt, A. & Pflugrath, J. W. (1987). J. Appl. Cryst.20, 306–315.
  • Olmstead, M. M., Costa, D. A., Maitra, K., Noll, B. C., Phillips, S. L., Van Calcar, P. M. & Balch, A. L. (1999). J. Am. Chem. Soc.121, 7090–7097.
  • Scheidt, W. R. (2000). The Porphyrin Handbook, Vol. 6, edited by K. M. Kadish, R. Guilard & K. M. Smith, pp. 49–112. San Diego: Academic Press.
  • Senge, M. O. (2005). Acta Cryst. E61, m399–m400.
  • Sheldrick, G. M. (1995). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography