PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1777.
Published online 2010 June 26. doi:  10.1107/S160053681002338X
PMCID: PMC3006753

2,4,6-Triphenyl­aniline

Abstract

Individual mol­ecules of the title compound, C24H19N, do not participate in hydrogen-bonding inter­actions due to the steric bulk of the phenyl rings ortho to the amine. The dihedral angles between the central ring and the pendant rings are 68.26 (10), 55.28 (10) and 30.61 (11)°.

Related literature

The reaction of equimolar amounts of pyrazole-3,5-dicarb­oxy­lic acid (HPzDCA) and primary amines have yielded ammonium carboxyl­ate salts that adopt layered architectures, see: Ugono et al. (2009 [triangle]); Beatty et al. (2002a [triangle],b [triangle]). For other amines that do not exhibit inter­molecular hydrogen bonding due to the bulky ortho phenyl groups, see: Cherian et al. (2005 [triangle]); Lonkin & Marshal (2004 [triangle]). For the preparation of 2,4,6-triphenyl­aniline, see: Basu et al. (2003 [triangle]); Paul & Clark (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1777-scheme1.jpg

Experimental

Crystal data

  • C24H19N
  • M r = 321.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1777-efi1.jpg
  • a = 10.735 (2) Å
  • b = 14.792 (3) Å
  • c = 11.911 (2) Å
  • β = 113.02 (3)°
  • V = 1740.7 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 100 K
  • 0.50 × 0.50 × 0.25 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.966, T max = 0.983
  • 44061 measured reflections
  • 6695 independent reflections
  • 5813 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.125
  • S = 1.02
  • 6695 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S160053681002338X/hg2686sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002338X/hg2686Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Center for Nanoscience at the University of Missouri-St Louis for access to the single-crystal X-ray facility.

supplementary crystallographic information

Comment

The reactions of equimolar amounts of pyrazole-3,5-dicarboxylic acid (HPzDCA) and primary amines have yielded ammonium carboxylate salts that adopt layered architectures (Ugono et al., 2009; Beatty et al., 2002a,b). The level of structural fidelity for these organic salts allows, from a crystal engineering point of view, for the tuning of material properties by changing the identity of the organic group for the amines employed in the reaction. The reaction of pyrazole-3,5-dicarboxylic acid and 2,4,6-triphenylaniline (TPA) does not produce appreciable amounts of the desired ammonium carboxylate salt. However, large colorless single crystals of the aniline were obtained and structurally characterized.

The title compound packs in the monoclinic space group P 21/c, with one molecule in the asymmetric unit. TPA does not self aggregate via intermolecular hydrogen bonds in the solid state. This lack of significant intermolecular hydrogen bonds appears to be due to the bulky ortho phenyl groups. These groups ensure that the distance requirements for hydrogen bond interactions are not satisfied, as potential participating hydrogen bonding donors and acceptors can not approach each other. This is not uncommon, as other amines, namely 2,6-bis(Benzofuran-2-yl)phenylamine (Lonkin et al., 2004) and (R,R)-2,6-bis(1-Phenylethyl)4-methylaniline (Cherian et al., 2005) among others, exhibit this characteristic for identical reasons.

Experimental

Into a 20 ml scintillation vial was placed 65 mg (37 mmol s) of pyrazole-3,5-dicarboxylic acid, 120 mg (37 mmol s) of 2,4,6-triphenylaniline (Basu et al., 2003; Paul & Clark, 2003) and 5 ml of a 3:2 ethanol:water mixture. The mixture was warmed gently until the solution became clear and then filtered. The filtrate was placed in another scintillation vial, and colorless single crystals of the title compound were obtained in 48 h.

Refinement

All non hydrogen atoms were refined anisotropically. Phenyl hydrogen atoms were placed in calculated positions and treated with a riding model C–H= 0.95 Å, Uiso(Haryl)= 1.2Ueq(C) for aromatic carbons. Amine hydrogen atoms were also placed in calulated positions and treated with a riding model N–H= 0.88 Å, Uiso(Hamine)= 1.2Ueq(N).

Figures

Fig. 1.
Thermal ellipsoid plot of 2,4,6-triphenylaniline at 50% probability.

Crystal data

C24H19NF(000) = 680
Mr = 321.40Dx = 1.226 Mg m3
Monoclinic, P21/cMelting point = 395–398 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.735 (2) ÅCell parameters from 6695 reflections
b = 14.792 (3) Åθ = 2.1–33.9°
c = 11.911 (2) ŵ = 0.07 mm1
β = 113.02 (3)°T = 100 K
V = 1740.7 (6) Å3Prism, colorless
Z = 40.50 × 0.50 × 0.25 mm

Data collection

Bruker SMART APEXII diffractometer6695 independent reflections
Radiation source: fine-focus sealed tube5813 reflections with I > 2σ(I)
graphiteRint = 0.027
ω scansθmax = 33.9°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→16
Tmin = 0.966, Tmax = 0.983k = −23→23
44061 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0697P)2 + 0.5511P] where P = (Fo2 + 2Fc2)/3
6695 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2. Conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1−0.03946 (8)0.31892 (6)0.10628 (7)0.02312 (15)
H1A−0.03090.35320.16930.028*
H1B−0.10860.28170.07600.028*
C10.05584 (7)0.32362 (5)0.05479 (6)0.01365 (13)
C20.16729 (8)0.38320 (5)0.10276 (7)0.01385 (13)
C30.26324 (8)0.38694 (5)0.05077 (7)0.01493 (13)
H30.33760.42720.08420.018*
C40.25338 (7)0.33322 (5)−0.04924 (7)0.01409 (13)
C50.14616 (7)0.27160 (5)−0.09177 (7)0.01405 (13)
H50.13990.2322−0.15670.017*
C60.04796 (7)0.26577 (5)−0.04244 (6)0.01310 (13)
C70.18451 (8)0.44422 (5)0.20775 (7)0.01407 (13)
C80.29191 (8)0.43079 (5)0.32071 (7)0.01645 (14)
H80.35170.38120.33140.020*
C90.31156 (8)0.48981 (6)0.41751 (7)0.01874 (15)
H90.38370.47960.49410.022*
C100.22601 (9)0.56362 (6)0.40238 (7)0.01889 (15)
H100.24040.60420.46810.023*
C110.11933 (9)0.57760 (6)0.29049 (7)0.01905 (15)
H110.06090.62800.27970.023*
C120.09793 (9)0.51788 (5)0.19407 (7)0.01751 (14)
H120.02390.52730.11840.021*
C130.34837 (8)0.34425 (5)−0.11131 (7)0.01444 (13)
C140.48238 (8)0.37311 (6)−0.04755 (7)0.01809 (14)
H140.51460.38290.03800.022*
C150.56863 (8)0.38749 (6)−0.10796 (8)0.02019 (15)
H150.65890.4071−0.06330.024*
C160.52351 (9)0.37333 (6)−0.23338 (8)0.02020 (15)
H160.58190.3842−0.27470.024*
C170.39142 (9)0.34296 (6)−0.29744 (8)0.01904 (15)
H170.36030.3318−0.38260.023*
C180.30489 (8)0.32897 (5)−0.23725 (7)0.01613 (14)
H180.21500.3088−0.28210.019*
C19−0.06390 (7)0.19929 (5)−0.09729 (6)0.01294 (12)
C20−0.19933 (8)0.22763 (5)−0.14897 (7)0.01598 (14)
H20−0.22060.2894−0.14330.019*
C21−0.30318 (8)0.16641 (5)−0.20861 (7)0.01793 (14)
H21−0.39440.1866−0.24310.022*
C22−0.27334 (8)0.07567 (5)−0.21765 (7)0.01761 (14)
H22−0.34380.0339−0.25870.021*
C23−0.13918 (8)0.04676 (5)−0.16595 (7)0.01747 (14)
H23−0.1184−0.0151−0.17150.021*
C24−0.03506 (8)0.10781 (5)−0.10612 (7)0.01537 (13)
H240.05590.0872−0.07120.018*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0255 (3)0.0285 (4)0.0204 (3)−0.0110 (3)0.0144 (3)−0.0100 (3)
C10.0160 (3)0.0130 (3)0.0116 (3)−0.0006 (2)0.0051 (2)0.0004 (2)
C20.0169 (3)0.0120 (3)0.0117 (3)−0.0010 (2)0.0047 (2)−0.0007 (2)
C30.0165 (3)0.0133 (3)0.0141 (3)−0.0019 (2)0.0050 (2)−0.0016 (2)
C40.0147 (3)0.0134 (3)0.0139 (3)−0.0009 (2)0.0053 (2)−0.0010 (2)
C50.0153 (3)0.0124 (3)0.0139 (3)−0.0006 (2)0.0052 (2)−0.0015 (2)
C60.0146 (3)0.0112 (3)0.0123 (3)−0.0006 (2)0.0040 (2)−0.0001 (2)
C70.0177 (3)0.0130 (3)0.0113 (3)−0.0022 (2)0.0054 (2)−0.0006 (2)
C80.0166 (3)0.0180 (3)0.0134 (3)−0.0012 (2)0.0045 (2)−0.0003 (2)
C90.0196 (3)0.0231 (4)0.0123 (3)−0.0046 (3)0.0049 (3)−0.0016 (3)
C100.0253 (4)0.0192 (3)0.0140 (3)−0.0058 (3)0.0095 (3)−0.0039 (3)
C110.0268 (4)0.0151 (3)0.0165 (3)0.0002 (3)0.0098 (3)−0.0012 (2)
C120.0229 (3)0.0148 (3)0.0132 (3)0.0011 (3)0.0052 (3)0.0004 (2)
C130.0153 (3)0.0125 (3)0.0155 (3)−0.0007 (2)0.0060 (2)−0.0011 (2)
C140.0154 (3)0.0195 (3)0.0182 (3)−0.0013 (2)0.0054 (3)−0.0018 (3)
C150.0159 (3)0.0192 (3)0.0262 (4)−0.0002 (3)0.0090 (3)−0.0002 (3)
C160.0214 (4)0.0173 (3)0.0264 (4)0.0023 (3)0.0142 (3)0.0026 (3)
C170.0245 (4)0.0166 (3)0.0186 (3)0.0012 (3)0.0112 (3)0.0001 (3)
C180.0181 (3)0.0144 (3)0.0158 (3)−0.0012 (2)0.0065 (3)−0.0017 (2)
C190.0153 (3)0.0117 (3)0.0117 (3)−0.0009 (2)0.0052 (2)0.0001 (2)
C200.0162 (3)0.0129 (3)0.0166 (3)0.0004 (2)0.0041 (2)0.0001 (2)
C210.0162 (3)0.0162 (3)0.0178 (3)−0.0010 (2)0.0028 (3)0.0006 (2)
C220.0189 (3)0.0152 (3)0.0167 (3)−0.0041 (2)0.0048 (3)−0.0012 (2)
C230.0204 (3)0.0123 (3)0.0204 (3)−0.0017 (2)0.0088 (3)−0.0018 (2)
C240.0168 (3)0.0124 (3)0.0176 (3)−0.0007 (2)0.0075 (3)−0.0006 (2)

Geometric parameters (Å, °)

N1—C11.3850 (11)C12—H120.9500
N1—H1A0.8800C13—C181.4040 (11)
N1—H1B0.8800C13—C141.4050 (11)
C1—C21.4142 (11)C14—C151.3933 (12)
C1—C61.4156 (10)C14—H140.9500
C2—C31.3951 (11)C15—C161.3944 (13)
C2—C71.4939 (11)C15—H150.9500
C3—C41.4010 (11)C16—C171.3960 (13)
C3—H30.9500C16—H160.9500
C4—C51.3987 (10)C17—C181.3930 (12)
C4—C131.4841 (11)C17—H170.9500
C5—C61.3959 (11)C18—H180.9500
C5—H50.9500C19—C241.4012 (11)
C6—C191.4907 (10)C19—C201.4030 (11)
C7—C121.3997 (11)C20—C211.3958 (11)
C7—C81.4020 (12)C20—H200.9500
C8—C91.3950 (11)C21—C221.3939 (12)
C8—H80.9500C21—H210.9500
C9—C101.3923 (13)C22—C231.3938 (12)
C9—H90.9500C22—H220.9500
C10—C111.3916 (13)C23—C241.3962 (11)
C10—H100.9500C23—H230.9500
C11—C121.3949 (11)C24—H240.9500
C11—H110.9500
C1—N1—H1A120.0C7—C12—H12119.7
C1—N1—H1B120.0C18—C13—C14117.95 (8)
H1A—N1—H1B120.0C18—C13—C4120.56 (7)
N1—C1—C2120.47 (7)C14—C13—C4121.46 (7)
N1—C1—C6120.92 (7)C15—C14—C13120.93 (8)
C2—C1—C6118.53 (7)C15—C14—H14119.5
C3—C2—C1120.01 (7)C13—C14—H14119.5
C3—C2—C7118.45 (7)C14—C15—C16120.51 (8)
C1—C2—C7121.53 (7)C14—C15—H15119.7
C2—C3—C4122.11 (7)C16—C15—H15119.7
C2—C3—H3118.9C15—C16—C17119.14 (8)
C4—C3—H3118.9C15—C16—H16120.4
C5—C4—C3117.09 (7)C17—C16—H16120.4
C5—C4—C13121.31 (7)C18—C17—C16120.38 (8)
C3—C4—C13121.54 (7)C18—C17—H17119.8
C6—C5—C4122.53 (7)C16—C17—H17119.8
C6—C5—H5118.7C17—C18—C13121.06 (8)
C4—C5—H5118.7C17—C18—H18119.5
C5—C6—C1119.59 (7)C13—C18—H18119.5
C5—C6—C19117.89 (6)C24—C19—C20118.49 (7)
C1—C6—C19122.51 (7)C24—C19—C6120.41 (7)
C12—C7—C8118.77 (7)C20—C19—C6120.94 (7)
C12—C7—C2120.91 (7)C21—C20—C19120.92 (7)
C8—C7—C2120.26 (7)C21—C20—H20119.5
C9—C8—C7120.42 (8)C19—C20—H20119.5
C9—C8—H8119.8C22—C21—C20120.14 (7)
C7—C8—H8119.8C22—C21—H21119.9
C10—C9—C8120.33 (8)C20—C21—H21119.9
C10—C9—H9119.8C23—C22—C21119.36 (7)
C8—C9—H9119.8C23—C22—H22120.3
C11—C10—C9119.64 (7)C21—C22—H22120.3
C11—C10—H10120.2C22—C23—C24120.65 (7)
C9—C10—H10120.2C22—C23—H23119.7
C10—C11—C12120.22 (8)C24—C23—H23119.7
C10—C11—H11119.9C23—C24—C19120.44 (7)
C12—C11—H11119.9C23—C24—H24119.8
C11—C12—C7120.61 (8)C19—C24—H24119.8
C11—C12—H12119.7

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2686).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Basu, B., Das, P., Bhuiyan, M. M. H. & Jha, S. (2003). Tetrahedron Lett.44, 3817–3820.
  • Beatty, A. M., Grange, K. E. & Simpson, S. E. (2002a). Chem. Eur. J.8, 3254–3259. [PubMed]
  • Beatty, A. M., Schneider, C. L., Simpson, A. E. & Zaher, J. L. (2002b). CrystEngComm, 4, 282–287.
  • Bruker (2007). APEX2 andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cherian, A. E., Domski, G. J., Rose, J. M., Lobkovsky, E. B. & Coates, G. W. (2005). Org. Lett.7, 5135–5137. [PubMed]
  • Lonkin, A. S. & Marshal, W. J. (2004). Organometallics, 23, 3276–3283.
  • Paul, S. & Clark, J. H. (2003). Green Chem.5, 635–638.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Ugono, O., Rath, N. P. & Beatty, A. M. (2009). Cryst. Growth Des.9, 4595–4598.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography