PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1565.
Published online 2010 June 5. doi:  10.1107/S1600536810020623
PMCID: PMC3006752

Ethyl 3-(4-methyl­benzyl­idene)carbazate

Abstract

There are two mol­ecules in the asymmetric unit of the title compound, C11H14N2O2, which have similar conformations. In the crystal, the mol­ecules are linked by N—H(...)O hydrogen bonds, generating C(4) chains propagating in [001].

Related literature

For background to Schiff bases with additional donor groups, see: Borisova et al. (2007 [triangle]); Gradinaru et al. (2007 [triangle]). For a related structure, see: Li et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1565-scheme1.jpg

Experimental

Crystal data

  • C11H14N2O2
  • M r = 206.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1565-efi1.jpg
  • a = 15.251 (3) Å
  • b = 8.2853 (17) Å
  • c = 18.139 (4) Å
  • β = 101.85 (3)°
  • V = 2243.3 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.22 × 0.21 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • 21172 measured reflections
  • 5128 independent reflections
  • 3927 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.185
  • S = 1.08
  • 5128 reflections
  • 272 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020623/hb5473sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020623/hb5473Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff bases bearing additional donor groups represent the important class of heteropolydentate ligands capable of forming mono-, bi-, and polynuclear complexes with metals in coordination chemistry.(Borisova, et al., 2007). Meanwhile, it is an important intermediate compound which have been reported to be compounds with second-order nonlinear optical (NLO) materials (Gradinaru et al., 2007). As part of our search for new schiff base compounds we synthesized the title compound (I), and describe its structure here. The title compound contains two independent molecules in the unit. The dihedral angle between the two independent benzene rings is [72.32 (11)°]. The C1A/C2A/O2A/C3A/O1A/N1A/N2A and C1B/C2B/O2B/C3B/O1B/N1B/N2B planes form dihedral angles of 4.43 (11)° and 2.33 (12)°, respectively, with the benzene planes. In the crystal lattice, the N—H···O intramolecular hydrogen bonds which form chains stable the molecule structures.

Bond lengths and angles are comparable to a related compound (Li et al., 2009).

Experimental

A mixture of 4-methylbenzaldehyde (0.1 mol), and ethyl carbazate (0.1 mol) was stirred in refluxing ethanol (20 ml) for 4 h to afford the title compound (0.092 mol, yield 92%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.97 Å, and with Uiso=1.2–1.5Ueq.

Figures

Fig. 1.
The structure of (I) showing 30% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.

Crystal data

C11H14N2O2F(000) = 880
Mr = 206.24Dx = 1.221 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3927 reflections
a = 15.251 (3) Åθ = 3.1–27.5°
b = 8.2853 (17) ŵ = 0.09 mm1
c = 18.139 (4) ÅT = 293 K
β = 101.85 (3)°Block, colorless
V = 2243.3 (8) Å30.22 × 0.21 × 0.20 mm
Z = 8

Data collection

Bruker SMART CCD diffractometer3927 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
graphiteθmax = 27.5°, θmin = 3.1°
ω scansh = −19→19
21172 measured reflectionsk = −10→10
5128 independent reflectionsl = −20→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.185w = 1/[σ2(Fo2) + (0.1115P)2 + 0.1779P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5128 reflectionsΔρmax = 0.24 e Å3
272 parametersΔρmin = −0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.064 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N2A0.37582 (8)0.81674 (15)0.31081 (7)0.0581 (3)
O2A0.59141 (7)0.95340 (14)0.38400 (6)0.0669 (3)
O1B0.46162 (7)0.81088 (16)0.00172 (6)0.0724 (4)
N1A0.46022 (8)0.83572 (16)0.35399 (7)0.0617 (3)
H1AA0.47600.78440.39580.074*
O2B0.57247 (7)0.80498 (16)0.10534 (6)0.0720 (3)
N1B0.44923 (9)0.93461 (17)0.11143 (6)0.0642 (4)
H1BA0.47570.95770.15680.077*
N2B0.36356 (8)0.98639 (16)0.08381 (6)0.0607 (3)
C5A0.23044 (9)0.70401 (17)0.29857 (8)0.0542 (3)
O1A0.50636 (8)1.00212 (17)0.26947 (6)0.0762 (4)
C3A0.51804 (10)0.93606 (19)0.32980 (7)0.0570 (3)
C5B0.23472 (10)1.12384 (18)0.10486 (7)0.0574 (4)
C3B0.49157 (10)0.84683 (19)0.06658 (8)0.0602 (4)
C8A0.04993 (10)0.66046 (18)0.22712 (9)0.0599 (4)
C4A0.32349 (10)0.72637 (19)0.33783 (8)0.0598 (4)
H4AA0.34440.67340.38320.072*
C4B0.32641 (11)1.06587 (18)0.12903 (8)0.0598 (4)
H4BA0.35781.08710.17770.072*
C9A0.10661 (10)0.7566 (2)0.19601 (8)0.0646 (4)
H9AA0.08450.80790.15040.077*
C10A0.19508 (10)0.77894 (19)0.23044 (8)0.0613 (4)
H10A0.23140.84470.20790.074*
C6B0.19536 (12)1.2192 (2)0.15151 (9)0.0701 (4)
H6BA0.22771.24590.19920.084*
C6A0.17352 (12)0.6081 (2)0.32983 (9)0.0718 (4)
H6AA0.19540.55600.37530.086*
C2A0.65982 (10)1.0586 (2)0.36603 (10)0.0683 (4)
H2AB0.63371.16040.34610.082*
H2AC0.68831.00870.32860.082*
C10B0.18358 (12)1.0863 (2)0.03459 (9)0.0721 (4)
H10B0.20831.02250.00190.087*
C8B0.05775 (12)1.2381 (2)0.05846 (10)0.0684 (4)
C9B0.09748 (13)1.1412 (2)0.01226 (10)0.0763 (5)
H9BA0.06491.1128−0.03510.092*
C2B0.62646 (11)0.7096 (3)0.06543 (10)0.0753 (5)
H2BB0.63910.76940.02280.090*
H2BC0.59540.61080.04700.090*
C7A0.08469 (12)0.5880 (2)0.29489 (10)0.0742 (5)
H7AA0.04780.52400.31770.089*
C11A−0.04662 (11)0.6351 (3)0.18905 (11)0.0790 (5)
H11A−0.05930.69430.14260.118*
H11B−0.08480.67260.22140.118*
H11C−0.05720.52220.17890.118*
C1B0.71149 (13)0.6717 (3)0.12010 (12)0.0866 (6)
H1BB0.74930.60690.09570.130*
H1BC0.69790.61370.16220.130*
H1BD0.74180.77040.13750.130*
C11B−0.03689 (13)1.2974 (3)0.03316 (13)0.0880 (6)
H11D−0.05311.36220.07220.132*
H11E−0.07681.20680.02280.132*
H11F−0.04131.3611−0.01170.132*
C7B0.10868 (13)1.2758 (2)0.12853 (10)0.0751 (5)
H7BA0.08411.34060.16090.090*
C1A0.72665 (12)1.0856 (3)0.43748 (11)0.0850 (5)
H1AB0.77311.15600.42800.127*
H1AC0.75230.98420.45630.127*
H1AD0.69751.13420.47410.127*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N2A0.0505 (6)0.0690 (8)0.0487 (6)0.0009 (5)−0.0044 (5)−0.0021 (5)
O2A0.0542 (6)0.0850 (7)0.0551 (6)−0.0096 (5)−0.0035 (5)0.0072 (5)
O1B0.0614 (6)0.1030 (9)0.0472 (6)0.0021 (6)−0.0020 (5)−0.0095 (5)
N1A0.0536 (6)0.0772 (8)0.0471 (6)−0.0042 (6)−0.0061 (5)0.0053 (5)
O2B0.0601 (6)0.1023 (9)0.0481 (5)0.0065 (6)−0.0017 (5)−0.0001 (5)
N1B0.0608 (7)0.0869 (9)0.0402 (6)0.0023 (6)−0.0008 (5)−0.0012 (5)
N2B0.0597 (7)0.0715 (8)0.0474 (6)−0.0014 (6)0.0031 (5)0.0050 (5)
C5A0.0523 (7)0.0578 (8)0.0488 (7)0.0031 (5)0.0018 (6)−0.0010 (5)
O1A0.0757 (7)0.1016 (9)0.0463 (6)−0.0109 (6)0.0007 (5)0.0080 (5)
C3A0.0547 (7)0.0680 (9)0.0450 (7)0.0018 (6)0.0023 (6)−0.0040 (6)
C5B0.0662 (8)0.0594 (8)0.0453 (7)−0.0043 (6)0.0082 (6)0.0064 (6)
C3B0.0567 (8)0.0755 (9)0.0442 (7)−0.0056 (6)0.0007 (6)0.0042 (6)
C8A0.0523 (7)0.0629 (8)0.0612 (8)0.0035 (6)0.0042 (6)−0.0077 (6)
C4A0.0572 (8)0.0666 (9)0.0496 (7)0.0027 (6)−0.0034 (6)0.0031 (6)
C4B0.0657 (8)0.0679 (9)0.0431 (6)−0.0045 (7)0.0051 (6)0.0040 (6)
C9A0.0560 (8)0.0822 (10)0.0514 (7)0.0064 (7)0.0014 (6)0.0093 (7)
C10A0.0529 (7)0.0740 (9)0.0550 (8)0.0014 (6)0.0061 (6)0.0110 (7)
C6B0.0803 (10)0.0777 (10)0.0496 (8)0.0010 (8)0.0072 (7)−0.0044 (7)
C6A0.0706 (9)0.0798 (11)0.0590 (8)−0.0036 (8)−0.0009 (7)0.0188 (7)
C2A0.0554 (8)0.0760 (10)0.0712 (9)−0.0050 (7)0.0075 (7)0.0037 (8)
C10B0.0715 (10)0.0894 (12)0.0523 (8)0.0067 (8)0.0053 (7)−0.0092 (7)
C8B0.0705 (9)0.0667 (9)0.0666 (9)0.0018 (7)0.0104 (8)0.0097 (7)
C9B0.0732 (10)0.0930 (12)0.0564 (8)0.0049 (9)−0.0014 (8)−0.0046 (8)
C2B0.0592 (9)0.1050 (13)0.0598 (9)0.0058 (8)0.0076 (7)0.0037 (8)
C7A0.0643 (9)0.0819 (11)0.0731 (10)−0.0112 (8)0.0068 (8)0.0157 (8)
C11A0.0554 (8)0.0934 (13)0.0820 (11)−0.0039 (8)0.0001 (8)−0.0089 (9)
C1B0.0635 (10)0.1040 (14)0.0834 (12)0.0040 (9)−0.0052 (9)0.0051 (10)
C11B0.0766 (12)0.0861 (13)0.0963 (14)0.0124 (9)0.0058 (10)0.0095 (10)
C7B0.0807 (11)0.0774 (11)0.0670 (10)0.0106 (8)0.0146 (9)−0.0050 (8)
C1A0.0609 (9)0.1028 (14)0.0836 (12)−0.0139 (9)−0.0028 (9)−0.0013 (10)

Geometric parameters (Å, °)

N2A—C4A1.2641 (19)C6B—H6BA0.9300
N2A—N1A1.3716 (17)C6A—C7A1.383 (2)
O2A—C3A1.3371 (17)C6A—H6AA0.9300
O2A—C2A1.4471 (19)C2A—C1A1.492 (2)
O1B—C3B1.2086 (18)C2A—H2AB0.9700
N1A—C3A1.349 (2)C2A—H2AC0.9700
N1A—H1AA0.8600C10B—C9B1.370 (3)
O2B—C3B1.3345 (18)C10B—H10B0.9300
O2B—C2B1.439 (2)C8B—C7B1.382 (3)
N1B—C3B1.350 (2)C8B—C9B1.386 (3)
N1B—N2B1.3687 (18)C8B—C11B1.505 (3)
N1B—H1BA0.8600C9B—H9BA0.9300
N2B—C4B1.2722 (19)C2B—C1B1.495 (2)
C5A—C6A1.382 (2)C2B—H2BB0.9700
C5A—C10A1.389 (2)C2B—H2BC0.9700
C5A—C4A1.4631 (19)C7A—H7AA0.9300
O1A—C3A1.2036 (17)C11A—H11A0.9600
C5B—C6B1.382 (2)C11A—H11B0.9600
C5B—C10B1.386 (2)C11A—H11C0.9600
C5B—C4B1.458 (2)C1B—H1BB0.9600
C8A—C7A1.373 (2)C1B—H1BC0.9600
C8A—C9A1.379 (2)C1B—H1BD0.9600
C8A—C11A1.507 (2)C11B—H11D0.9600
C4A—H4AA0.9300C11B—H11E0.9600
C4B—H4BA0.9300C11B—H11F0.9600
C9A—C10A1.378 (2)C7B—H7BA0.9300
C9A—H9AA0.9300C1A—H1AB0.9600
C10A—H10A0.9300C1A—H1AC0.9600
C6B—C7B1.384 (2)C1A—H1AD0.9600
C4A—N2A—N1A116.09 (12)C1A—C2A—H2AC110.3
C3A—O2A—C2A115.62 (12)H2AB—C2A—H2AC108.6
C3A—N1A—N2A118.98 (12)C9B—C10B—C5B121.43 (16)
C3A—N1A—H1AA120.5C9B—C10B—H10B119.3
N2A—N1A—H1AA120.5C5B—C10B—H10B119.3
C3B—O2B—C2B116.12 (12)C7B—C8B—C9B116.98 (16)
C3B—N1B—N2B119.14 (12)C7B—C8B—C11B121.96 (17)
C3B—N1B—H1BA120.4C9B—C8B—C11B121.05 (16)
N2B—N1B—H1BA120.4C10B—C9B—C8B121.66 (16)
C4B—N2B—N1B116.38 (12)C10B—C9B—H9BA119.2
C6A—C5A—C10A117.40 (13)C8B—C9B—H9BA119.2
C6A—C5A—C4A120.10 (13)O2B—C2B—C1B106.82 (15)
C10A—C5A—C4A122.49 (13)O2B—C2B—H2BB110.4
O1A—C3A—O2A124.40 (14)C1B—C2B—H2BB110.4
O1A—C3A—N1A126.25 (14)O2B—C2B—H2BC110.4
O2A—C3A—N1A109.35 (12)C1B—C2B—H2BC110.4
C6B—C5B—C10B117.28 (15)H2BB—C2B—H2BC108.6
C6B—C5B—C4B120.97 (13)C8A—C7A—C6A121.28 (15)
C10B—C5B—C4B121.75 (15)C8A—C7A—H7AA119.4
O1B—C3B—O2B124.93 (15)C6A—C7A—H7AA119.4
O1B—C3B—N1B125.97 (15)C8A—C11A—H11A109.5
O2B—C3B—N1B109.10 (12)C8A—C11A—H11B109.5
C7A—C8A—C9A117.39 (14)H11A—C11A—H11B109.5
C7A—C8A—C11A120.69 (15)C8A—C11A—H11C109.5
C9A—C8A—C11A121.92 (15)H11A—C11A—H11C109.5
N2A—C4A—C5A120.84 (13)H11B—C11A—H11C109.5
N2A—C4A—H4AA119.6C2B—C1B—H1BB109.5
C5A—C4A—H4AA119.6C2B—C1B—H1BC109.5
N2B—C4B—C5B120.22 (13)H1BB—C1B—H1BC109.5
N2B—C4B—H4BA119.9C2B—C1B—H1BD109.5
C5B—C4B—H4BA119.9H1BB—C1B—H1BD109.5
C10A—C9A—C8A122.00 (14)H1BC—C1B—H1BD109.5
C10A—C9A—H9AA119.0C8B—C11B—H11D109.5
C8A—C9A—H9AA119.0C8B—C11B—H11E109.5
C9A—C10A—C5A120.56 (14)H11D—C11B—H11E109.5
C9A—C10A—H10A119.7C8B—C11B—H11F109.5
C5A—C10A—H10A119.7H11D—C11B—H11F109.5
C5B—C6B—C7B121.16 (15)H11E—C11B—H11F109.5
C5B—C6B—H6BA119.4C8B—C7B—C6B121.48 (16)
C7B—C6B—H6BA119.4C8B—C7B—H7BA119.3
C5A—C6A—C7A121.36 (14)C6B—C7B—H7BA119.3
C5A—C6A—H6AA119.3C2A—C1A—H1AB109.5
C7A—C6A—H6AA119.3C2A—C1A—H1AC109.5
O2A—C2A—C1A106.88 (14)H1AB—C1A—H1AC109.5
O2A—C2A—H2AB110.3C2A—C1A—H1AD109.5
C1A—C2A—H2AB110.3H1AB—C1A—H1AD109.5
O2A—C2A—H2AC110.3H1AC—C1A—H1AD109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1B—H1BA···O1A0.862.032.8747 (17)165
N1A—H1AA···O1Bi0.862.132.9383 (17)157

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5473).

References

  • Borisova, N. E., Reshetova, M. D. & Ustynyuk, Y. A. (2007). Chem. Rev.107, 46–79. [PubMed]
  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gradinaru, J., Forni, A. & Druta, V. (2007). Inorg. Chem.46, 884–895. [PubMed]
  • Li, Y.-F., Liu, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2959. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography