PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1718.
Published online 2010 June 18. doi:  10.1107/S1600536810021859
PMCID: PMC3006750

4,4′-[(2,7-Dibromo­fluorene-9,9-di­yl)dimethyl­ene]dipyridinium bis­(perchlorate)

Abstract

In the crystal of the title compound, C25H20Br2N2 2+·2ClO4 , inter­molecular N—H(...)O and C—H(...)O hydrogen bonds, along with C—H(...)π inter­actions, stabilize the crystal structure.

Related literature

A variety of ligands of different mol­ecular dimensions and functional properties have been utilized in the preparation of numerous supra­molecular assemblies with exotic architectures, see: Applegarth et al., (2005 [triangle]). For related structures, see: Meerssche et al. (1979 [triangle], 1980 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1718-scheme1.jpg

Experimental

Crystal data

  • C25H20Br2N2 2+·2ClO4
  • M r = 707.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1718-efi1.jpg
  • a = 15.605 (3) Å
  • b = 11.267 (2) Å
  • c = 16.318 (3) Å
  • β = 117.60 (3)°
  • V = 2542.6 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.45 mm−1
  • T = 295 K
  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.441, T max = 0.537
  • 11835 measured reflections
  • 2915 independent reflections
  • 2611 reflections with I > 2σ(I)
  • R int = 0.062
  • 3 standard reflections every 100 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.103
  • S = 1.06
  • 2915 reflections
  • 177 parameters
  • H-atom parameters constrained
  • Δρmax = 1.01 e Å−3
  • Δρmin = −0.79 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021859/hg2685sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021859/hg2685Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Natural Science Foundation of Shandong Province (No. Y2007B14).

supplementary crystallographic information

Comment

A variety of ligands of different molecular dimensions and functional properties were utilized for the preparation of numerous supramolecular assemblies of exotic architectures as reported in the recent literature (Applegarth et al., 2005). Herein, we report a new bipyridine derivative of 2,7-dibromo-9,9-(4-pyridyl-methyl) fluorene [DBPMF].

scheme I

The structure of the title compound contains a protonated 2,7-dibromo-9,9-bis(4-pyridinium-methyl) fluorene dications DBPMFH22+ and two perchlorate anions ClO4-. All the bond lengths and bond angles in the phenyl ring and five-membered ring are corresponding with those observed in 2-acetylaminofluorene (Meerssche et al., 1980) and 4-acetylamino-fluorene (Meerssche et al., 1979). Two bromine atoms along with the thirteen atoms of fluorenyl ring are coplanar (P1) and the biggest deviation is 0.038Å for C6 atom. The dihedral angle between the plane P1 and the pyridyl ring containing N1 atom is 72.11 (2)°.

In the crystal lattice, there are four types of supramolecular interactions (Table 1), including N—H···O hydrogen bonds, C—H···O potential hydrogen bonds, C—H···π supramolecular interaction and π–π stacking interactions. Among these supramolecular interactions, the two types N—H···O hydrogen bonds link two DBPMFH22+ cations with two ClO4- anions to construct one-dimensional chains, then the other supramolecular interactions help the 1D chains to form three-dimensional net-works, which stabilize the crystal structure.

Experimental

DBPMF was synthesized by the reaction of 2,7-dibromofluorene (3.24 g, 0.01 mol) and 4-chloromethyl pyridine hydrochloride (1.64 g, 0.02 mol) in DMSO (70 ml). The title compound was obtained by the reaction of DBPMF (2.55 g, 5.0 mmol) and HClO4 (0.26 ml, 5.0 mmol) in EtOH (50 ml). Single crystals suitable for x-ray measurements were obtained by recrystallization at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.93-0.97 Å, N—H distance=0.86Å and with Uiso=1.2-1.5Ueq.

Figures

Fig. 1.
The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C25H20Br2N22+·2ClO4F(000) = 1408
Mr = 707.15Dx = 1.847 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 15.605 (3) Åθ = 4–14°
b = 11.267 (2) ŵ = 3.45 mm1
c = 16.318 (3) ÅT = 295 K
β = 117.60 (3)°Block, yellow
V = 2542.6 (11) Å30.25 × 0.20 × 0.18 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer2611 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
graphiteθmax = 27.5°, θmin = 3.1°
ω/2θ scansh = −20→20
Absorption correction: ψ scan (North et al., 1968)k = −14→14
Tmin = 0.441, Tmax = 0.537l = −21→21
11835 measured reflections3 standard reflections every 100 reflections
2915 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0681P)2 + 0.5103P] where P = (Fo2 + 2Fc2)/3
2915 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = −0.79 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1−0.201221 (15)0.319251 (18)−0.114789 (15)0.01844 (12)
N10.33006 (13)0.39368 (16)0.24329 (14)0.0178 (4)
H1A0.38190.37070.24180.021*
C1−0.13197 (15)0.2901 (2)0.01439 (16)0.0153 (4)
C2−0.11455 (16)0.17300 (17)0.04368 (17)0.0162 (5)
H2A−0.13770.11150.00090.019*
C3−0.06207 (15)0.14838 (19)0.13788 (15)0.0154 (4)
H3A−0.05000.07040.15890.019*
C4−0.02836 (14)0.24228 (18)0.19940 (15)0.0140 (4)
C5−0.04692 (14)0.36049 (18)0.16834 (16)0.0141 (4)
C6−0.09989 (14)0.38606 (18)0.07490 (15)0.0146 (4)
H6A−0.11340.46380.05360.017*
C70.00000.4457 (2)0.25000.0123 (5)
C80.07543 (14)0.52981 (17)0.24235 (15)0.0136 (4)
H8A0.04290.57370.18490.016*
H8B0.09650.58700.29240.016*
C90.16421 (14)0.47237 (18)0.24518 (15)0.0133 (4)
C100.16000 (15)0.39694 (18)0.17545 (15)0.0157 (4)
H10A0.10040.37220.12900.019*
C110.24415 (15)0.35912 (19)0.17540 (16)0.0175 (4)
H11A0.24130.30980.12850.021*
C120.33797 (15)0.46320 (19)0.31370 (16)0.0183 (4)
H12A0.39860.48410.36050.022*
C130.25553 (15)0.50303 (18)0.31584 (15)0.0152 (4)
H13A0.26060.55050.36450.018*
Cl10.41022 (4)0.31707 (4)0.05644 (4)0.01488 (15)
O10.31184 (11)0.35890 (17)0.01812 (12)0.0258 (4)
O20.41264 (16)0.19359 (15)0.03767 (15)0.0321 (5)
O30.45717 (12)0.33505 (14)0.15648 (12)0.0213 (4)
O40.46088 (12)0.38494 (16)0.01772 (12)0.0286 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02330 (17)0.01761 (16)0.01334 (17)−0.00066 (7)0.00760 (12)−0.00009 (7)
N10.0150 (8)0.0174 (9)0.0236 (10)0.0018 (7)0.0112 (8)0.0021 (8)
C10.0146 (9)0.0182 (9)0.0130 (10)−0.0009 (8)0.0064 (8)0.0001 (9)
C20.0211 (11)0.0122 (10)0.0171 (12)−0.0033 (7)0.0105 (10)−0.0052 (8)
C30.0200 (10)0.0111 (9)0.0167 (11)0.0006 (8)0.0097 (9)0.0000 (9)
C40.0152 (9)0.0124 (9)0.0165 (11)0.0002 (7)0.0090 (8)0.0018 (8)
C50.0144 (9)0.0106 (9)0.0196 (11)−0.0009 (7)0.0097 (8)−0.0020 (9)
C60.0158 (9)0.0119 (9)0.0171 (10)−0.0002 (7)0.0086 (8)0.0008 (8)
C70.0125 (12)0.0115 (13)0.0135 (14)0.0000.0064 (11)0.000
C80.0160 (9)0.0095 (8)0.0167 (10)−0.0007 (7)0.0088 (8)0.0001 (8)
C90.0162 (9)0.0108 (9)0.0152 (10)−0.0005 (7)0.0091 (8)0.0032 (8)
C100.0165 (9)0.0158 (10)0.0154 (10)−0.0007 (8)0.0079 (8)0.0000 (8)
C110.0207 (10)0.0148 (10)0.0201 (12)0.0005 (8)0.0121 (9)0.0000 (9)
C120.0153 (9)0.0183 (10)0.0184 (11)−0.0014 (8)0.0054 (8)0.0019 (9)
C130.0181 (10)0.0134 (9)0.0135 (10)−0.0010 (8)0.0068 (8)0.0017 (8)
Cl10.0145 (3)0.0161 (3)0.0132 (3)−0.00181 (16)0.0057 (2)−0.00099 (17)
O10.0162 (8)0.0345 (9)0.0247 (9)0.0037 (7)0.0077 (7)0.0074 (8)
O20.0390 (10)0.0178 (9)0.0283 (11)−0.0006 (7)0.0061 (9)−0.0061 (7)
O30.0210 (8)0.0273 (8)0.0128 (8)−0.0003 (6)0.0055 (7)−0.0034 (7)
O40.0253 (8)0.0390 (10)0.0264 (9)−0.0070 (7)0.0161 (7)0.0037 (8)

Geometric parameters (Å, °)

Br1—C11.900 (2)C7—C81.561 (2)
N1—C111.342 (3)C8—C91.510 (3)
N1—C121.348 (3)C8—H8A0.9700
N1—H1A0.8600C8—H8B0.9700
C1—C21.387 (3)C9—C101.397 (3)
C1—C61.392 (3)C9—C131.399 (3)
C2—C31.394 (3)C10—C111.381 (3)
C2—H2A0.9300C10—H10A0.9300
C3—C41.384 (3)C11—H11A0.9300
C3—H3A0.9300C12—C131.378 (3)
C4—C51.407 (3)C12—H12A0.9300
C4—C4i1.468 (4)C13—H13A0.9300
C5—C61.387 (3)Cl1—O21.4289 (18)
C5—C71.526 (3)Cl1—O41.4395 (17)
C6—H6A0.9300Cl1—O11.4423 (16)
C7—C5i1.526 (3)Cl1—O31.4609 (19)
C7—C8i1.561 (2)
C11—N1—C12122.30 (19)C9—C8—C7116.89 (17)
C11—N1—H1A118.9C9—C8—H8A108.1
C12—N1—H1A118.9C7—C8—H8A108.1
C2—C1—C6123.1 (2)C9—C8—H8B108.1
C2—C1—Br1117.84 (18)C7—C8—H8B108.1
C6—C1—Br1119.06 (17)H8A—C8—H8B107.3
C1—C2—C3119.4 (2)C10—C9—C13117.85 (19)
C1—C2—H2A120.3C10—C9—C8122.64 (18)
C3—C2—H2A120.3C13—C9—C8119.28 (19)
C4—C3—C2118.7 (2)C11—C10—C9120.1 (2)
C4—C3—H3A120.7C11—C10—H10A119.9
C2—C3—H3A120.7C9—C10—H10A119.9
C3—C4—C5121.1 (2)N1—C11—C10119.8 (2)
C3—C4—C4i130.12 (13)N1—C11—H11A120.1
C5—C4—C4i108.75 (13)C10—C11—H11A120.1
C6—C5—C4120.7 (2)N1—C12—C13119.5 (2)
C6—C5—C7129.05 (19)N1—C12—H12A120.2
C4—C5—C7110.21 (19)C13—C12—H12A120.2
C5—C6—C1117.00 (19)C12—C13—C9120.3 (2)
C5—C6—H6A121.5C12—C13—H13A119.8
C1—C6—H6A121.5C9—C13—H13A119.8
C5—C7—C5i102.1 (2)O2—Cl1—O4110.40 (13)
C5—C7—C8i112.17 (11)O2—Cl1—O1110.72 (12)
C5i—C7—C8i112.75 (11)O4—Cl1—O1109.07 (11)
C5—C7—C8112.75 (11)O2—Cl1—O3108.98 (11)
C5i—C7—C8112.17 (11)O4—Cl1—O3108.89 (10)
C8i—C7—C8105.2 (2)O1—Cl1—O3108.74 (11)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.862.242.997 (3)148
C11—H11A···O10.932.573.196 (3)125
C12—H12A···O4ii0.932.443.193 (3)138
C13—H13A···O1iii0.932.473.376 (3)164
C10—H10A···Cg30.932.933.688 (2)140

Symmetry codes: (ii) −x+1, y, −z+1/2; (iii) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2685).

References

  • Applegarth, L., Goetra, A. E. & Steed, J. W. (2005). Chem. Commun.18, 2405–2406. [PubMed]
  • Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Meerssche, M., Germain, G., Declercq, J. P. & Touillaux, R. (1979). Cryst. Struct. Commun.8, 119–122.
  • Meerssche, M., Germain, G., Declercq, J. P., Touillaux, R., Roberfroid, M. & Razzouk, C. (1980). Cryst. Struct. Commun.9, 515–518.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography