PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1731.
Published online 2010 June 23. doi:  10.1107/S1600536810022270
PMCID: PMC3006747

(2-Decan­amido­eth­yl)dimethyl­amine N-oxide

Abstract

In the title compound, C14H30N2O2, the almost planar nonyl chains are fully extended: the N—C—C—N torsion angle of −161.95 (8)° indicates an anti conformation. The crystal structure features N—H(...)O hydrogen bonds and C—H(...)O inter­actions.

Related literature

For the bond lengths and angles of nonyl chains, see: Low et al. (1999 [triangle]); Kato & Ikemori (2003 [triangle]); Ulrich et al. (1990 [triangle]). For related structures containing the amide group, see: Belicchi-Ferrari et al. (2007 [triangle]); Jeffrey & Maluszynska (1989 [triangle]). For N—O bond lengths, see: Katrusiak et al. (1987 [triangle]); Kemmitt et al. (2002 [triangle]); Maia et al. (1984 [triangle]); Boese et al. (1999 [triangle]); Palatinus & Damay (2009 [triangle]). For a related structure, see: Sauer et al. (2003 [triangle]). For the synthesis, see: Piłakowska-Pietras et al. (2008 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]); Rospenk et al. (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1731-scheme1.jpg

Experimental

Crystal data

  • C14H30N2O2
  • M r = 258.40
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1731-efi1.jpg
  • a = 5.378 (2) Å
  • b = 8.113 (4) Å
  • c = 17.801 (5) Å
  • α = 79.55 (4)°
  • β = 86.38 (3)°
  • γ = 86.36 (4)°
  • V = 761.2 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.23 × 0.19 × 0.08 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire2 diffractometer
  • 10305 measured reflections
  • 3149 independent reflections
  • 2746 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.094
  • S = 1.06
  • 3149 reflections
  • 169 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022270/ds2034sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022270/ds2034Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the University of Wrocław. I am grateful to Dr Lucjan Jerzykiewicz, Department of Chem­istry, University of Wrocław for valuable discussion of the results and Professor Kazimiera A. Wilk, Department of Chemistry, Wrocław University of Technology, for providing the surfactant.

supplementary crystallographic information

Comment

Surfactants are amphiphilic molecules composed by at least two parts, one of them is polar or hydrophilic and the other one nonpolar or hydrophobic. A special group of surface active amine oxides are amidoamine oxides based on fatty monocarboxylic acids and diamines, particularly N,N-dimethylethylenediamine and N,N-dimethyl-1,3-propanediamine. These surfactants are typically employed in hair and body care, cleaning and shampoo formulations as foaming agents, wetting agents, thickeners and conditioners They are low or nontoxic to humans and higherorganisms but at the same time exhibit an antimicrobial activity.

The crystal and molecular structure of typical N-oxide derivatives were previously determined for 17-oxosparteine N(l)-oxide hydrochloride (A. Katrusiak, et al.) and 4-methylpyridine-N-oxide (L.Palatinus et al.). The crystal and molecular structure recognized for N-oxide surfactant, N,N-dimethyl-n-tetradecylamine oxide (Fronczek et al. ), in some degree is similar to the structure of our compound. In general, N-oxide derivatives and especially N-oxide surfactants are known as very difficult for crystallization, so the crystal structure solution for 2-(decanoylamino)ethyldimethylamine-N-oxide presented in this report is a very rare case.

The title compound consists of a hydrophobic alkyl chain and a lipophilic moiety represented by amide and N-oxide groups bridged by ethyl group (Figure 1). The planar nine carbon side adopt fully extended conformations and is twisted 45.6 (1)° from the plane of adjacent amide moiety. The torsion angle N1—C1—C2—N2 of -161.95 (8)° shows that this part takes an antiperiplanar conformation. The bond lengths and angles of nonyl chain Low et al. (1999) and amide group Belicchi-Ferrari et al. (2007) are within the normal ranges and comparable to the previously reported structures. The N—O bond length of is slightly shorter than the corresponding distances in tertiary acyclic amine oxides Boese et al. (1999).

The crystal structures is composed of the alternated hydrophilic and hydrophobic layers (Figure 1). The components in the hydrophilic parts are linked to each other via N—H···O bonds of R2,2(10) ring motifs Ulrich et al. (1990) and the weak C—H···O interactions (Table 2), whereas in the hydrophobic regions they interact through van der Waals contacts.

Experimental

A title compound was synthesized according to method given by Piłakowska-Pietras et al. (2008) The surfactant was carefully purificated several times. Suitable single crystalwere obtained by slow evaporation of thecompoundsolutionin a chloroform–hexane mixture and kept cold at -5¯C. The crystals of 2-(decanoylamino)ethyldimethylamine-N-oxides appeared unexpectedly taking into account well known problems with the surfactants crystallization.

Refinement

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.98–0.99 Å. The Uiso values were constrained to be -1.5Uequ (methyl H atoms) and -1.2Uequ (other H atoms). The rotating model group was considered for the methyl group. In the case of N1, the hydrogen atom was located from a difference Fourier map and refined isotropically.

Figures

Fig. 1.
Table 1. Selected geometric parameters (Å, °).
Fig. 2.
Table 2. Hydrogen bond parameters (Å, °).

Crystal data

C14H30N2O2Z = 2
Mr = 258.40F(000) = 288
Triclinic, P1Dx = 1.127 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.378 (2) ÅCell parameters from 9030 reflections
b = 8.113 (4) Åθ = 3–36°
c = 17.801 (5) ŵ = 0.08 mm1
α = 79.55 (4)°T = 100 K
β = 86.38 (3)°Block, colorless
γ = 86.36 (4)°0.23 × 0.19 × 0.08 mm
V = 761.2 (5) Å3

Data collection

Oxford Diffraction Xcalibur Sapphire2 (large Be window) diffractometer2746 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
graphiteθmax = 26.5°, θmin = 3.0°
ω scansh = −6→6
10305 measured reflectionsk = −8→10
3149 independent reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0535P)2 + 0.1328P] where P = (Fo2 + 2Fc2)/3
3149 reflections(Δ/σ)max = 0.001
169 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.14655 (12)0.29531 (8)0.63607 (4)0.01841 (17)
O20.61547 (12)0.19768 (8)0.42458 (4)0.01908 (17)
N1−0.00050 (14)0.15787 (9)0.61997 (4)0.01399 (18)
N20.31670 (14)0.39834 (10)0.44253 (4)0.01548 (18)
C10.11161 (17)0.19110 (11)0.53929 (5)0.0149 (2)
H1A−0.02450.21330.50330.018*
H1B0.21020.08950.52910.018*
C20.27914 (17)0.33925 (11)0.52434 (5)0.01533 (19)
H2A0.20150.43130.54900.018*
H2B0.44220.30470.54680.018*
C30.48478 (16)0.32380 (11)0.39906 (5)0.01460 (19)
C40.49927 (17)0.40400 (12)0.31534 (5)0.0169 (2)
H4A0.40900.51540.30940.020*
H4B0.41290.33400.28610.020*
C50.76504 (17)0.42604 (12)0.28085 (5)0.0175 (2)
H5A0.85870.48570.31280.021*
H5B0.85040.31440.28050.021*
C60.76453 (18)0.52507 (12)0.19949 (5)0.0187 (2)
H6A0.66950.63350.20000.022*
H6B0.67650.46200.16750.022*
C71.02383 (18)0.55974 (13)0.16275 (6)0.0210 (2)
H7A1.11890.45150.16170.025*
H7B1.11250.62270.19460.025*
C81.01841 (18)0.65973 (13)0.08150 (5)0.0217 (2)
H8A0.93210.59570.04960.026*
H8B0.92020.76680.08250.026*
C91.27600 (19)0.69820 (13)0.04450 (6)0.0218 (2)
H9A1.36070.76430.07590.026*
H9B1.37530.59110.04460.026*
C101.27329 (19)0.79467 (13)−0.03721 (6)0.0218 (2)
H10A1.17360.9017−0.03770.026*
H10B1.19070.7284−0.06900.026*
C111.5337 (2)0.83259 (13)−0.07251 (6)0.0246 (2)
H11A1.61540.8998−0.04090.030*
H11B1.63380.7256−0.07140.030*
C121.5335 (2)0.92734 (15)−0.15446 (6)0.0327 (3)
H12A1.70550.9478−0.17380.049*
H12B1.43831.0348−0.15590.049*
H12C1.45660.8605−0.18650.049*
C130.19656 (17)0.11555 (12)0.67652 (5)0.0181 (2)
H13A0.11860.09640.72840.027*
H13B0.30770.20870.67090.027*
H13C0.29310.01380.66750.027*
C14−0.15989 (17)0.01185 (11)0.62702 (5)0.0180 (2)
H14A−0.2401−0.01030.67860.027*
H14B−0.0565−0.08720.61790.027*
H14C−0.28810.03690.58920.027*
H20.246 (2)0.4950 (17)0.4221 (7)0.027 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0201 (3)0.0152 (3)0.0181 (3)0.0071 (3)0.0033 (3)−0.0022 (3)
O20.0176 (3)0.0169 (3)0.0207 (4)0.0037 (3)0.0009 (3)−0.0003 (3)
N10.0136 (4)0.0137 (4)0.0135 (4)0.0021 (3)0.0010 (3)−0.0008 (3)
N20.0151 (4)0.0140 (4)0.0154 (4)0.0010 (3)0.0015 (3)0.0013 (3)
C10.0156 (4)0.0163 (4)0.0119 (4)−0.0004 (3)0.0012 (3)−0.0013 (3)
C20.0149 (4)0.0163 (4)0.0139 (4)−0.0006 (3)0.0010 (3)−0.0007 (3)
C30.0124 (4)0.0136 (4)0.0174 (4)−0.0024 (3)0.0002 (3)−0.0017 (3)
C40.0153 (4)0.0182 (5)0.0160 (5)0.0009 (3)0.0010 (3)−0.0015 (3)
C50.0158 (4)0.0186 (5)0.0163 (5)0.0011 (3)0.0026 (3)−0.0002 (4)
C60.0180 (5)0.0206 (5)0.0159 (5)−0.0002 (4)0.0019 (4)−0.0005 (4)
C70.0189 (5)0.0248 (5)0.0170 (5)−0.0003 (4)0.0024 (4)0.0012 (4)
C80.0209 (5)0.0260 (5)0.0161 (5)−0.0018 (4)0.0018 (4)0.0013 (4)
C90.0217 (5)0.0244 (5)0.0171 (5)−0.0020 (4)0.0021 (4)0.0012 (4)
C100.0239 (5)0.0236 (5)0.0165 (5)−0.0029 (4)0.0015 (4)0.0001 (4)
C110.0267 (5)0.0266 (5)0.0183 (5)−0.0032 (4)0.0038 (4)0.0007 (4)
C120.0408 (7)0.0354 (6)0.0193 (5)−0.0086 (5)0.0057 (5)0.0016 (4)
C130.0177 (4)0.0208 (5)0.0145 (4)0.0018 (4)−0.0030 (3)0.0001 (4)
C140.0157 (4)0.0168 (5)0.0201 (5)−0.0021 (3)0.0027 (4)−0.0008 (4)

Geometric parameters (Å, °)

O1—N11.385 (2)C5—H5A0.9900
O2—C31.237 (2)C5—H5B0.9900
N1—C11.506 (2)C6—H6A0.9900
N1—C131.489 (2)C6—H6B0.9900
N1—C141.489 (2)C7—H7A0.9900
N2—C21.454 (2)C7—H7B0.9900
N2—C31.340 (2)C8—H8A0.9900
N2—H20.87 (2)C8—H8B0.9900
C1—C21.523 (2)C9—H9A0.9900
C3—C41.514 (2)C9—H9B0.9900
C4—C51.528 (2)C10—H10A0.9900
C5—C61.523 (2)C10—H10B0.9900
C6—C71.524 (2)C11—H11A0.9900
C7—C81.525 (2)C11—H11B0.9900
C8—C91.522 (2)C12—H12A0.9800
C9—C101.522 (2)C12—H12B0.9800
C10—C111.524 (2)C12—H12C0.9800
C11—C121.520 (2)C13—H13A0.9800
C1—H1A0.9900C13—H13B0.9800
C1—H1B0.9900C13—H13C0.9800
C2—H2A0.9900C14—H14A0.9800
C2—H2B0.9900C14—H14B0.9800
C4—H4A0.9900C14—H14C0.9800
C4—H4B0.9900
O1—N1—C1111.04 (7)C7—C6—H6B109.00
O1—N1—C13109.25 (7)H6A—C6—H6B108.00
O1—N1—C14108.99 (7)C6—C7—H7A109.00
C1—N1—C13111.29 (7)C6—C7—H7B109.00
C1—N1—C14107.63 (7)C8—C7—H7A109.00
C13—N1—C14108.58 (8)C8—C7—H7B109.00
C2—N2—C3122.22 (8)H7A—C7—H7B108.00
C3—N2—H2117.9 (8)C7—C8—H8A109.00
C2—N2—H2119.1 (8)C7—C8—H8B109.00
N1—C1—C2112.89 (8)C9—C8—H8A109.00
N2—C2—C1110.07 (8)C9—C8—H8B109.00
O2—C3—N2123.01 (9)H8A—C8—H8B108.00
O2—C3—C4122.25 (9)C8—C9—H9A109.00
N2—C3—C4114.73 (8)C8—C9—H9B109.00
C3—C4—C5114.08 (8)C10—C9—H9A109.00
C4—C5—C6110.99 (8)C10—C9—H9B109.00
C5—C6—C7113.98 (8)H9A—C9—H9B108.00
C6—C7—C8112.97 (8)C9—C10—H10A109.00
C7—C8—C9113.64 (8)C9—C10—H10B109.00
C8—C9—C10114.14 (9)C11—C10—H10A109.00
C9—C10—C11112.91 (8)C11—C10—H10B109.00
C10—C11—C12113.41 (9)H10A—C10—H10B108.00
N1—C1—H1A109.00C10—C11—H11A109.00
N1—C1—H1B109.00C10—C11—H11B109.00
C2—C1—H1A109.00C12—C11—H11A109.00
C2—C1—H1B109.00C12—C11—H11B109.00
H1A—C1—H1B108.00H11A—C11—H11B108.00
N2—C2—H2A110.00C11—C12—H12A109.00
N2—C2—H2B110.00C11—C12—H12B109.00
C1—C2—H2A110.00C11—C12—H12C109.00
C1—C2—H2B110.00H12A—C12—H12B110.00
H2A—C2—H2B108.00H12A—C12—H12C109.00
C3—C4—H4A109.00H12B—C12—H12C109.00
C3—C4—H4B109.00N1—C13—H13A109.00
C5—C4—H4A109.00N1—C13—H13B109.00
C5—C4—H4B109.00N1—C13—H13C110.00
H4A—C4—H4B108.00H13A—C13—H13B109.00
C4—C5—H5A109.00H13A—C13—H13C109.00
C4—C5—H5B109.00H13B—C13—H13C109.00
C6—C5—H5A109.00N1—C14—H14A109.00
C6—C5—H5B109.00N1—C14—H14B109.00
H5A—C5—H5B108.00N1—C14—H14C109.00
C5—C6—H6A109.00H14A—C14—H14B110.00
C5—C6—H6B109.00H14A—C14—H14C109.00
C7—C6—H6A109.00H14B—C14—H14C109.00
O1—N1—C1—C260.52 (9)N2—C3—C4—C5135.19 (9)
C13—N1—C1—C2−61.41 (9)C3—C4—C5—C6−173.49 (8)
C14—N1—C1—C2179.74 (8)C4—C5—C6—C7177.04 (8)
C3—N2—C2—C1−81.38 (10)C5—C6—C7—C8−179.74 (9)
C2—N2—C3—O21.92 (13)C6—C7—C8—C9178.94 (9)
C2—N2—C3—C4−179.36 (8)C7—C8—C9—C10178.76 (9)
N1—C1—C2—N2−161.95 (8)C8—C9—C10—C11179.52 (9)
O2—C3—C4—C5−46.08 (12)C9—C10—C11—C12179.38 (9)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.87 (2)1.89 (2)2.753 (2)168.9 (2)
C1—H1A···O2ii0.992.483.453 (2)166
C1—H1B···O2iii0.992.473.363 (2)150
C4—H4A···O1i0.992.323.204 (2)148
C13—H13C···O2iii0.982.583.438 (2)146
C14—H14B···O2iii0.982.603.449 (2)145

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2034).

References

  • Belicchi-Ferrari, M., Bisceglie, F., Pelosi, G., Pinelli, S. & Tarasconi, P. (2007). Polyhedron, 26, 5150–5161.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Boese, R., Blaeser, D. & Weiss, H.-C. (1999). Angew. Chem. Int. Ed.38, 988–992.
  • Jeffrey, G. A. & Maluszynska, H. (1989). Acta Cryst. B45, 447–452. [PubMed]
  • Kato, M. & Ikemori, M. (2003). Acta Cryst. C59, m25–m26. [PubMed]
  • Katrusiak, A., Ratajczak-Sitarz, M. & Kałuski, Z. (1987). Acta Cryst. C43, 2386–2389.
  • Kemmitt, T., Gainsford, G. J., Steel, P. J. & Wikaira, J. (2002). Acta Cryst. E58, o851–o852.
  • Low, J. N., Cook, A., Imrie, C. T. & Wardell, J. L. (1999). Acta Cryst C55, IUC9900123,1999
  • Maia, E. R., Peguy, A. & Perez, S. (1984). Can. J. Chem.62, 6–10.
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Palatinus, L. & Damay, F. (2009). Acta Cryst. B65, 784–786. [PubMed]
  • Piłakowska-Pietras, A., Baran, D., Krasowska, A. & Piasecki, A. (2008). J. Surfact. Deterg.11 187–194
  • Rospenk, M., Koll, A., Glowiak, T. & Sobczyk, L. (1989). J. Mol. Struct.195, 33–38.
  • Sauer, J. D., Elnagar, H. Y. & Fronczek, F. R. (2003). Acta Cryst. C59, o62–o64. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ulrich, G., Klaska, K. H., Jarchow, O. H., Schmalle, H. W., König, W. A., Heitsch, H., Rathmann, R., Hausen, B. M. & Schulz, K.-H. (1990). Acta Cryst. C46, 1715–1718. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography