PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1800.
Published online 2010 June 26. doi:  10.1107/S1600536810022087
PMCID: PMC3006746

2-(Bicyclo­[2.2.1]hept-5-en-2-yl)-1H-pyrrolo­[2,3-b]pyridine

Abstract

The crystal structure of the title compound, C14H14N2, displays inter­molecular N—H(...)N hydrogen bonds, forming dimers of enanti­omeric mol­ecules via a crystallographic centre of inversion.

Related literature

For the general synthetic procedure for 2-substituted 7-aza­indoles, see Davis et al. (1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1800-scheme1.jpg

Experimental

Crystal data

  • C14H14N2
  • M r = 210.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1800-efi1.jpg
  • a = 7.7837 (12) Å
  • b = 8.9867 (14) Å
  • c = 15.973 (3) Å
  • β = 96.408 (8)°
  • V = 1110.3 (3) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.58 mm−1
  • T = 193 K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • 2274 measured reflections
  • 2113 independent reflections
  • 1940 reflections with I > 2σ(I)
  • R int = 0.050
  • 3 standard reflections every 60 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.082
  • wR(F 2) = 0.227
  • S = 1.09
  • 2113 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022087/im2211sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022087/im2211Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Federal Ministry of Education and Research, Germany, Merckle GmbH, Ulm, Germany and the Fonds der Chemischen Industrie, Germany for their generous support of this work.

supplementary crystallographic information

Comment

The interest in 7- azaindoles as bioisoster of indole or purine has arisen in conjunction with recent pharmacological programs. Numerous publications on its derivatization reflect the increasing attention paid to this heterocyclic system. The crystal structure of 2-bicyclo[2.2.1]hept-5-en-2-yl-1H-pyrrolo[2,3-b]pyridine, C14H14N2, is characterized by an intermolecular hydrogen bond N1—H1··· N7 (2.05 Å) forming dimers of enantiomeric molecules, which are related by a crystallographic centre of symmetry.

Experimental

3-methylpyridine (4 g, 43 mmol) was added dropwise to a freshly prepared solution of LDA in THF (0.9M) (59 ml, 53 mmol) at 273 K. The resulting suspension was stirred at 273 K for 30 min. Racemic 5-norbornene-2-carbonitrile (5.12 g, 43 mmol) was added dropwise at such a rate that the temperature did not rise above 283 K. Stirring was continued for 60 min. at 273 K. Another portion of LDA solution (59 ml, 53 mmol) was added and stirring was continued overnight at 333 K. The final reaction mixture was allowed to cool and ice-water was added. The mixture was extracted with ethylacetate and the combined extracts were dried (Na2SO4) and the solvent was evaporated under reduced pressure. The residue was subjected to flash chromatography. The title compound was obtained in a yield of 31% (2.834 g, 13.48 mmol). Crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent from a methanolic solution.

Refinement

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom). The hydrogen atom attached to N1 was located in diff. Fourier maps and refined using a fixed isotropic displacement parameter and applying a riding motion model.

Figures

Fig. 1.
Molecular structure of compound I. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.

Crystal data

C14H14N2F(000) = 448
Mr = 210.27Dx = 1.258 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.7837 (12) Åθ = 65–69°
b = 8.9867 (14) ŵ = 0.58 mm1
c = 15.973 (3) ÅT = 193 K
β = 96.408 (8)°Block, colourless
V = 1110.3 (3) Å30.40 × 0.30 × 0.20 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.050
Radiation source: rotating anodeθmax = 70.0°, θmin = 5.6°
graphiteh = −9→0
ω/2θ scansk = −10→0
2274 measured reflectionsl = −19→19
2113 independent reflections3 standard reflections every 60 min
1940 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.227H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.1178P)2 + 1.2641P] where P = (Fo2 + 2Fc2)/3
2113 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.8046 (3)0.5132 (3)0.41997 (15)0.0360 (6)
H10.86910.57990.45190.043*
C20.6512 (3)0.5373 (3)0.36871 (17)0.0362 (6)
C30.5981 (3)0.4080 (3)0.32996 (18)0.0399 (7)
H30.49640.39430.29200.048*
C3A0.7228 (3)0.2965 (3)0.35653 (16)0.0345 (6)
C40.7490 (4)0.1469 (3)0.33978 (17)0.0391 (7)
H40.66920.09290.30200.047*
C50.8949 (4)0.0794 (3)0.37998 (18)0.0411 (7)
H50.9164−0.02280.37000.049*
C61.0105 (3)0.1604 (3)0.43497 (18)0.0387 (7)
H61.10920.11000.46150.046*
N70.9921 (3)0.3044 (3)0.45291 (14)0.0355 (6)
C7A0.8499 (3)0.3677 (3)0.41290 (16)0.0317 (6)
C80.3998 (4)0.7013 (4)0.3032 (2)0.0472 (8)
H80.38170.63110.25440.057*
C90.5793 (3)0.6919 (3)0.35899 (18)0.0383 (7)
H90.66380.75480.33210.046*
C100.5422 (5)0.7683 (4)0.4420 (2)0.0528 (9)
H10A0.62010.85420.45520.063*
H10B0.55610.69740.48970.063*
C110.3507 (4)0.8199 (4)0.4233 (2)0.0545 (9)
H110.29090.84730.47340.065*
C120.3445 (4)0.9316 (4)0.3555 (2)0.0485 (8)
H120.32321.03500.36120.058*
C130.3743 (4)0.8614 (4)0.2839 (2)0.0532 (9)
H130.37820.90680.23040.064*
C140.2793 (4)0.6819 (4)0.3730 (2)0.0573 (9)
H14A0.30020.58790.40490.069*
H14B0.15540.69130.35180.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0236 (10)0.0376 (12)0.0445 (12)0.0054 (9)−0.0063 (9)−0.0044 (10)
C20.0249 (12)0.0446 (15)0.0376 (13)0.0056 (11)−0.0034 (10)0.0010 (11)
C30.0298 (13)0.0458 (16)0.0417 (14)0.0002 (11)−0.0058 (11)−0.0010 (12)
C3A0.0302 (13)0.0406 (14)0.0325 (12)−0.0005 (11)0.0024 (10)−0.0005 (11)
C40.0386 (14)0.0425 (15)0.0365 (14)−0.0024 (12)0.0052 (11)−0.0048 (12)
C50.0428 (15)0.0378 (15)0.0440 (15)0.0057 (12)0.0109 (12)−0.0055 (12)
C60.0319 (13)0.0412 (15)0.0436 (15)0.0109 (11)0.0070 (11)−0.0003 (12)
N70.0236 (10)0.0402 (12)0.0422 (12)0.0070 (9)0.0013 (9)−0.0024 (10)
C7A0.0246 (12)0.0362 (13)0.0342 (13)0.0042 (10)0.0028 (10)0.0004 (10)
C80.0381 (15)0.0533 (18)0.0484 (17)0.0099 (13)−0.0028 (13)−0.0038 (14)
C90.0264 (13)0.0452 (16)0.0424 (14)0.0059 (11)0.0006 (11)0.0011 (12)
C100.0521 (19)0.059 (2)0.0451 (16)0.0176 (15)−0.0032 (14)−0.0003 (15)
C110.0504 (19)0.064 (2)0.0525 (18)0.0156 (16)0.0187 (15)0.0002 (16)
C120.0328 (14)0.0534 (18)0.0593 (19)0.0152 (13)0.0044 (13)−0.0024 (14)
C130.0432 (17)0.065 (2)0.0508 (17)0.0135 (15)0.0010 (14)0.0083 (16)
C140.0337 (16)0.068 (2)0.072 (2)−0.0002 (15)0.0140 (15)−0.0068 (18)

Geometric parameters (Å, °)

N1—C7A1.362 (3)C8—C141.546 (5)
N1—C21.388 (3)C8—C91.573 (4)
N1—H10.9027C8—H81.0000
C2—C31.359 (4)C9—C101.548 (4)
C2—C91.500 (4)C9—H91.0000
C3—C3A1.426 (4)C10—C111.558 (5)
C3—H30.9500C10—H10A0.9900
C3A—C41.391 (4)C10—H10B0.9900
C3A—C7A1.414 (4)C11—C121.473 (5)
C4—C51.381 (4)C11—C141.547 (5)
C4—H40.9500C11—H111.0000
C5—C61.391 (4)C12—C131.349 (5)
C5—H50.9500C12—H120.9500
C6—N71.336 (4)C13—H130.9500
C6—H60.9500C14—H14A0.9900
N7—C7A1.342 (3)C14—H14B0.9900
C8—C131.480 (5)
C7A—N1—C2108.4 (2)C2—C9—C10115.2 (2)
C7A—N1—H1123.5C2—C9—C8114.0 (2)
C2—N1—H1128.1C10—C9—C8102.9 (2)
C3—C2—N1109.4 (2)C2—C9—H9108.2
C3—C2—C9130.9 (2)C10—C9—H9108.2
N1—C2—C9119.5 (2)C8—C9—H9108.2
C2—C3—C3A107.6 (2)C9—C10—C11103.5 (2)
C2—C3—H3126.2C9—C10—H10A111.1
C3A—C3—H3126.2C11—C10—H10A111.1
C4—C3A—C7A116.9 (2)C9—C10—H10B111.1
C4—C3A—C3137.0 (3)C11—C10—H10B111.1
C7A—C3A—C3106.0 (2)H10A—C10—H10B109.0
C5—C4—C3A117.8 (3)C12—C11—C14100.6 (3)
C5—C4—H4121.1C12—C11—C10107.2 (3)
C3A—C4—H4121.1C14—C11—C1098.1 (3)
C4—C5—C6120.3 (3)C12—C11—H11116.1
C4—C5—H5119.9C14—C11—H11116.1
C6—C5—H5119.9C10—C11—H11116.1
N7—C6—C5124.4 (3)C13—C12—C11108.0 (3)
N7—C6—H6117.8C13—C12—H12126.0
C5—C6—H6117.8C11—C12—H12126.0
C6—N7—C7A114.3 (2)C12—C13—C8108.1 (3)
N7—C7A—N1125.1 (2)C12—C13—H13126.0
N7—C7A—C3A126.3 (2)C8—C13—H13126.0
N1—C7A—C3A108.6 (2)C8—C14—C1194.1 (3)
C13—C8—C14100.5 (3)C8—C14—H14A112.9
C13—C8—C9105.1 (3)C11—C14—H14A112.9
C14—C8—C999.0 (2)C8—C14—H14B112.9
C13—C8—H8116.5C11—C14—H14B112.9
C14—C8—H8116.5H14A—C14—H14B110.3
C9—C8—H8116.5
C7A—N1—C2—C30.6 (3)N1—C2—C9—C10−58.2 (4)
C7A—N1—C2—C9−175.0 (2)C3—C2—C9—C88.7 (4)
N1—C2—C3—C3A−0.6 (3)N1—C2—C9—C8−176.8 (2)
C9—C2—C3—C3A174.4 (3)C13—C8—C9—C2−166.1 (3)
C2—C3—C3A—C4−177.8 (3)C14—C8—C9—C290.4 (3)
C2—C3—C3A—C7A0.3 (3)C13—C8—C9—C1068.6 (3)
C7A—C3A—C4—C50.8 (4)C14—C8—C9—C10−35.0 (3)
C3—C3A—C4—C5178.8 (3)C2—C9—C10—C11−127.4 (3)
C3A—C4—C5—C6−0.2 (4)C8—C9—C10—C11−2.8 (3)
C4—C5—C6—N7−0.2 (4)C9—C10—C11—C12−64.3 (3)
C5—C6—N7—C7A−0.1 (4)C9—C10—C11—C1439.5 (3)
C6—N7—C7A—N1−179.0 (2)C14—C11—C12—C13−32.7 (3)
C6—N7—C7A—C3A0.8 (4)C10—C11—C12—C1369.4 (4)
C2—N1—C7A—N7179.4 (2)C11—C12—C13—C80.3 (4)
C2—N1—C7A—C3A−0.4 (3)C14—C8—C13—C1232.2 (3)
C4—C3A—C7A—N7−1.1 (4)C9—C8—C13—C12−70.2 (3)
C3—C3A—C7A—N7−179.7 (3)C13—C8—C14—C11−48.3 (3)
C4—C3A—C7A—N1178.6 (2)C9—C8—C14—C1159.0 (3)
C3—C3A—C7A—N10.1 (3)C12—C11—C14—C848.6 (3)
C3—C2—C9—C10127.3 (3)C10—C11—C14—C8−60.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···N7i0.902.052.932 (3)166

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2211).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Davis, M. L., Wakewfield, B. J. & Wardellt, J. A. (1992). Tetrahedron, 48, 939–952.
  • Dräger, M. & Gattow, G. (1971). Acta Chem. Scand.25, 761–762.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography