PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1587.
Published online 2010 June 5. doi:  10.1107/S1600536810020611
PMCID: PMC3006741

1-[3-(2-Nitro­phen­yl)-5-phenyl-2-pyrazolin-1-yl]ethanone

Abstract

The title compound, C17H15N3O3, was prepared from 1-(2-nitro­phen­yl)-3-phenyl­prop-2-en-1-one and hydrazine. The dihedral angle between the benzene and phenyl rings is 74.55 (2)°. The pyrazoline ring is in a slight envelope conformation with the C atom bonded to the phenyl ring forming the flap. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds connect mol­ecules into chains along [100].

Related literature

For the biological activity of pyrazoline and its derivatives, see: Rawal et al. (1963 [triangle]); Dhal et al. (1975 [triangle]); Lombardino & Ottemes (1981 [triangle]); Manna et al. (2002 [triangle]). For related structures, see: Guo et al. (2006 [triangle]); Fahrni et al. (2003 [triangle]); Kimura et al. (1977 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1587-scheme1.jpg

Experimental

Crystal data

  • C17H15N3O3
  • M r = 309.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1587-efi1.jpg
  • a = 6.5064 (13) Å
  • b = 12.385 (3) Å
  • c = 18.752 (4) Å
  • β = 98.26 (3)°
  • V = 1495.4 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.22 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer
  • 7203 measured reflections
  • 1710 independent reflections
  • 1354 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.087
  • S = 1.13
  • 1710 reflections
  • 208 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020611/lh5050sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020611/lh5050Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province (No. Y2008B29), P. R. China, and the Yuandu Scholar Fund of Weifang City.

supplementary crystallographic information

Comment

Pyrazoline and its derivatives are important and useful five-membered heterocyclic compounds, which are found to possess antiviral (Rawal et al., 1963), antifungal (Dhal et al.,1975) and immunosuppressive activities (Lombardino & Ottemes, 1981). 1-Acetyl-3,5-diaryl-2-pyrazolines have been found to inhibit monoamine oxidases (Manna et al., 2002). As part of our ongoing investigation of pyrazolines and their metal complexes, we report herein the crystal structure of the title compound, (I).

In the structure of (I) (Fig. 1), the bond lengths and angles are comparable with those in related structures (Guo et al.,2006; Fahrni et al., 2003; Kimura et al., 1977). The dihehral angle between the benzene and phenyl rings is 74.55 (2)°. The pyrazoline ring is in a slight envelope conformation with atom C13 deviating by 0.158 (4) Å form the essentially planar atoms N1/N2/C14/C15 (rms deviation = 0.003 Å). In the crystal structure, weak intermolecular C—H···O hydrogen bonds connect molecules into chains along [100].

Experimental

3-phenyl-1-(2-nitrophenyl)-2-propen-1-one (0.01 mol) and hydrazine (0.03 mol, 80%) were mixed in acetic acid (30 ml) and stirred under reflux for 6 h; the mixture was then poured into ice-water to afford colourless solids. The solids were filtered off and washed with water until the pH of the solution was about 7.0. Finally, the crystals were dried at room temperature. Single crystals of compound (I) suitable for X-ray measurements were obtained by recrystallization from EtOH at room temperature.

Refinement

In the absence of anomalous dispersion effects the Freidel pairs were merged. All H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances in the range 0.93–0.98Å and with Uiso=1.2–1.5Ueq.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C17H15N3O3F(000) = 648
Mr = 309.32Dx = 1.374 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1354 reflections
a = 6.5064 (13) Åθ = 3.3–27.3°
b = 12.385 (3) ŵ = 0.10 mm1
c = 18.752 (4) ÅT = 293 K
β = 98.26 (3)°Bar, colourless
V = 1495.4 (5) Å30.22 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer1354 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
graphiteθmax = 27.5°, θmin = 3.3°
[var phi] and ω scansh = −8→7
7203 measured reflectionsk = −16→16
1710 independent reflectionsl = −24→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.0483P)2 + 0.1147P] where P = (Fo2 + 2Fc2)/3
1710 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C70.1900 (3)0.67920 (17)0.28552 (12)0.0384 (5)
N1−0.1077 (3)0.79477 (16)0.27976 (10)0.0373 (4)
C120.2478 (3)0.68202 (17)0.36067 (13)0.0381 (5)
N2−0.2744 (3)0.82918 (16)0.23108 (10)0.0410 (4)
O3−0.5900 (3)0.90449 (18)0.20896 (11)0.0596 (5)
C150.0046 (3)0.73132 (18)0.24741 (12)0.0376 (5)
C80.3234 (4)0.6223 (2)0.24684 (14)0.0455 (5)
H8A0.29190.61800.19700.055*
N30.1191 (3)0.73560 (17)0.40852 (11)0.0455 (5)
O2−0.0409 (3)0.69121 (17)0.41903 (11)0.0593 (5)
C17−0.4397 (4)0.8805 (2)0.25303 (13)0.0408 (5)
C16−0.4249 (4)0.9042 (2)0.33180 (14)0.0485 (6)
H16A−0.54930.93990.34110.073*
H16B−0.30750.95020.34640.073*
H16C−0.40830.83790.35850.073*
C90.5016 (4)0.5720 (2)0.28093 (17)0.0520 (6)
H9A0.58730.53450.25390.062*
C13−0.2630 (4)0.7933 (2)0.15621 (12)0.0438 (5)
H13A−0.39020.75430.13720.053*
C1−0.2353 (4)0.8890 (2)0.10825 (11)0.0427 (5)
C2−0.4070 (4)0.9335 (2)0.06620 (13)0.0505 (6)
H2A−0.53630.90120.06520.061*
O10.1846 (4)0.8190 (2)0.43697 (15)0.0842 (8)
C110.4254 (4)0.6332 (2)0.39490 (15)0.0483 (6)
H11A0.45950.63790.44470.058*
C100.5517 (4)0.5776 (2)0.35494 (18)0.0557 (7)
H10A0.67090.54370.37770.067*
C14−0.0785 (5)0.7133 (2)0.16914 (13)0.0533 (6)
H14A−0.12490.63940.16050.064*
H14B0.02540.73000.13850.064*
C6−0.0422 (4)0.9367 (2)0.10715 (13)0.0503 (6)
H6A0.07540.90710.13420.060*
C5−0.0242 (5)1.0285 (3)0.06587 (15)0.0595 (7)
H5A0.10521.06030.06570.071*
C3−0.3884 (5)1.0259 (3)0.02551 (14)0.0614 (7)
H3A−0.50541.0560−0.00150.074*
C4−0.1966 (5)1.0726 (3)0.02533 (14)0.0633 (8)
H4A−0.18361.1340−0.00220.076*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C70.0380 (11)0.0305 (11)0.0467 (12)0.0000 (9)0.0063 (10)0.0020 (9)
N10.0378 (10)0.0350 (10)0.0380 (9)0.0039 (8)0.0018 (8)0.0045 (7)
C120.0385 (12)0.0295 (11)0.0452 (11)−0.0034 (9)0.0027 (10)−0.0010 (9)
N20.0412 (10)0.0440 (11)0.0367 (9)0.0071 (9)0.0013 (8)0.0042 (8)
O30.0403 (10)0.0773 (14)0.0593 (10)0.0098 (9)0.0003 (9)0.0081 (9)
C150.0407 (12)0.0329 (12)0.0389 (11)0.0003 (9)0.0044 (10)0.0005 (9)
C80.0484 (13)0.0356 (13)0.0532 (13)0.0031 (10)0.0097 (11)0.0009 (10)
N30.0442 (11)0.0482 (12)0.0426 (10)−0.0021 (10)0.0008 (9)−0.0013 (9)
O20.0479 (10)0.0729 (13)0.0590 (11)−0.0043 (9)0.0140 (9)0.0091 (9)
C170.0342 (11)0.0398 (13)0.0484 (12)−0.0009 (9)0.0063 (10)0.0061 (10)
C160.0465 (13)0.0472 (14)0.0542 (14)0.0025 (11)0.0153 (11)0.0020 (12)
C90.0420 (13)0.0403 (14)0.0751 (18)0.0055 (11)0.0128 (13)−0.0027 (12)
C130.0474 (14)0.0434 (13)0.0381 (12)0.0024 (10)−0.0030 (10)−0.0042 (10)
C10.0454 (13)0.0489 (14)0.0321 (10)0.0046 (10)−0.0006 (10)−0.0062 (9)
C20.0465 (13)0.0651 (17)0.0378 (11)0.0047 (12)−0.0015 (10)0.0027 (11)
O10.0747 (14)0.0793 (16)0.1018 (18)−0.0201 (12)0.0239 (13)−0.0516 (14)
C110.0477 (14)0.0379 (13)0.0553 (14)−0.0013 (11)−0.0065 (11)0.0005 (11)
C100.0402 (13)0.0409 (14)0.0829 (19)0.0066 (12)−0.0018 (13)0.0042 (13)
C140.0695 (17)0.0472 (15)0.0409 (12)0.0148 (13)−0.0004 (12)−0.0066 (10)
C60.0459 (14)0.0654 (17)0.0372 (12)0.0006 (13)−0.0026 (10)−0.0036 (11)
C50.0654 (17)0.0661 (18)0.0475 (13)−0.0154 (15)0.0103 (13)−0.0063 (13)
C30.0671 (18)0.074 (2)0.0427 (13)0.0159 (16)0.0055 (12)0.0105 (13)
C40.086 (2)0.0612 (19)0.0443 (14)−0.0036 (16)0.0155 (15)0.0074 (12)

Geometric parameters (Å, °)

C7—C81.399 (3)C9—H9A0.9300
C7—C121.406 (3)C13—C11.514 (4)
C7—C151.461 (3)C13—C141.548 (4)
N1—C151.283 (3)C13—H13A0.9800
N1—N21.381 (3)C1—C21.386 (3)
C12—C111.378 (3)C1—C61.392 (4)
C12—N31.471 (3)C2—C31.390 (4)
N2—C171.363 (3)C2—H2A0.9300
N2—C131.484 (3)C11—C101.375 (4)
O3—C171.223 (3)C11—H11A0.9300
C15—C141.506 (3)C10—H10A0.9300
C8—C91.388 (4)C14—H14A0.9700
C8—H8A0.9300C14—H14B0.9700
N3—O11.212 (3)C6—C51.390 (4)
N3—O21.218 (3)C6—H6A0.9300
C17—C161.496 (3)C5—C41.374 (4)
C16—H16A0.9600C5—H5A0.9300
C16—H16B0.9600C3—C41.376 (5)
C16—H16C0.9600C3—H3A0.9300
C9—C101.381 (4)C4—H4A0.9300
C8—C7—C12115.8 (2)N2—C13—H13A109.7
C8—C7—C15120.0 (2)C1—C13—H13A109.7
C12—C7—C15124.2 (2)C14—C13—H13A109.7
C15—N1—N2108.84 (18)C2—C1—C6118.6 (2)
C11—C12—C7122.8 (2)C2—C1—C13119.7 (2)
C11—C12—N3115.2 (2)C6—C1—C13121.7 (2)
C7—C12—N3121.9 (2)C1—C2—C3120.9 (3)
C17—N2—N1121.55 (18)C1—C2—H2A119.5
C17—N2—C13125.0 (2)C3—C2—H2A119.5
N1—N2—C13113.05 (17)C10—C11—C12119.5 (2)
N1—C15—C7121.70 (19)C10—C11—H11A120.2
N1—C15—C14113.7 (2)C12—C11—H11A120.2
C7—C15—C14124.5 (2)C11—C10—C9120.0 (2)
C9—C8—C7121.8 (3)C11—C10—H10A120.0
C9—C8—H8A119.1C9—C10—H10A120.0
C7—C8—H8A119.1C15—C14—C13102.69 (19)
O1—N3—O2124.6 (2)C15—C14—H14A111.2
O1—N3—C12117.3 (2)C13—C14—H14A111.2
O2—N3—C12118.0 (2)C15—C14—H14B111.2
O3—C17—N2119.9 (2)C13—C14—H14B111.2
O3—C17—C16123.5 (2)H14A—C14—H14B109.1
N2—C17—C16116.6 (2)C5—C6—C1120.3 (2)
C17—C16—H16A109.5C5—C6—H6A119.9
C17—C16—H16B109.5C1—C6—H6A119.9
H16A—C16—H16B109.5C4—C5—C6120.4 (3)
C17—C16—H16C109.5C4—C5—H5A119.8
H16A—C16—H16C109.5C6—C5—H5A119.8
H16B—C16—H16C109.5C4—C3—C2119.9 (3)
C10—C9—C8120.1 (2)C4—C3—H3A120.1
C10—C9—H9A120.0C2—C3—H3A120.1
C8—C9—H9A120.0C5—C4—C3120.0 (3)
N2—C13—C1110.74 (19)C5—C4—H4A120.0
N2—C13—C14100.74 (17)C3—C4—H4A120.0
C1—C13—C14116.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6A···O3i0.932.413.293 (4)157

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5050).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dhal, P. N., Acharya, T. E. & Nayak, A. (1975). J. Indian Chem. Soc.52, 1196–1200.
  • Fahrni, C. J., Yang, L. C. & VanDerveer, D. G. (2003). J. Am. Chem. Soc.125, 3799–3812. [PubMed]
  • Guo, H.-M., Jian, F.-F., Zhou, L.-Y., Zhao, P.-S. & Zheng, J. (2006). Acta Cryst. E62, o4337–o4338.
  • Kimura, T., Kai, Y., Yasuoka, N. & Kasai, N. (1977). Acta Cryst. B33, 1786–1792.
  • Lombardino, G. & Ottemes, I. G. (1981). J. Med. Chem.24, 830–834. [PubMed]
  • Manna, F., Chimenti, F., Bolasco, A., Secci, D., Bizzarri, B., Befani, O., Turini, P., Mondovi, B., Alcaro, S. & Tafi, A. (2002). Bioorg. Med. Chem. Lett.12, 3629–3635. [PubMed]
  • Rawal, A. A., Thakor, V. M. & Shah, N. M. (1963). J. Indian Chem. Soc.40, 323–326.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography