PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1821.
Published online 2010 June 26. doi:  10.1107/S1600536810024220
PMCID: PMC3006739

2-Amino­pyridinium picrate

Abstract

In the title compound, C5H7N2 +·C6H2N3O7 , there are two crystallographically independent cations and anions (A and B) in the asymmetric unit. In both picrate anions, one of the nitro groups lies in the plane of the benzene ring [r.m.s. deviations = 0.014 (2) and 0.014 (2) Å for anions A and B, respectively] and the other two are twisted away by 39.0 (2) and 18.8 (2)° in A, and 18.2 (1) and 2.5 (2)° in B. In the crystal, the cations and anions are linked by inter­molecular N—H(...)O and C—H(...)O hydrogen bonds, forming a two-dimensional network.

Related literature

For general background to picrate complexes, see: In et al. (1997 [triangle]); Zaderenko et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1821-scheme1.jpg

Experimental

Crystal data

  • C5H7N2 +·C6H2N3O7
  • M r = 323.23
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1821-efi1.jpg
  • a = 11.2543 (4) Å
  • b = 11.6588 (5) Å
  • c = 12.9883 (5) Å
  • α = 114.641 (4)°
  • β = 100.204 (3)°
  • γ = 103.928 (3)°
  • V = 1427.16 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 110 K
  • 0.20 × 0.17 × 0.15 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.975, T max = 0.981
  • 12905 measured reflections
  • 6555 independent reflections
  • 3011 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.179
  • S = 0.90
  • 6555 reflections
  • 438 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024220/sj5016sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024220/sj5016Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to thank Dr A. Chandramohan, Department of Chemistry, Sri Ramakrishna Mission Vidyalaya Arts and Science College, Coimbatore, India, for his valuable suggestions.

supplementary crystallographic information

Comment

2,4,6-Trinitro phenol, also called picric acid, was primarily used to manufacture explosives and dyes. Picric acid forms molecular charge transfer complexes with aromatic compounds through electrostatic or hydrogen bonding interactions (In et al., 1997; Zaderenko et al., 1997). We report here the crystal structure of the title salt to understand its molecular conformation and packing mode.

There are two crystallographically independent cations and anions (A & B) in the asymmetric unit. Both the pyridinium rings of the cation (Figure 1) are planar (r.m.s. deviations 0.004 (4) and 0.002 (3) Å). In the picrate anion, the keto O atom lies in the plane of the benzene ring [-0.010 (2) Å] in molecule A whereas it deviates by -0.076 (2)Å in molecule B. The C8A—O1A [1.252 (2) Å] and C8B—O1B [1.237 (3) Å] bonds assume partial double bond character. The C8A—C9A (1.446 (3) Å), C8B—C9B (1.450 (3) Å), C8A—C13A (1.436 (3) Å) and C8B—C13B (1.441 (3) Å) bond distances are longer than the normal bond lengths in a benzene ring. In both the anions , one of the nitro groups of the picrate lies in the plane of the benzene ring while the other two are twisted away by 39.0 (2)° [N14A/O2A/O3A] & 18.8 (2)° [N16A/O6A/O7A] for molecule A and 18.2 (1)° [N14B/O2B/O3B] & 2.5 (2)° [N16B/O6B/O7B] for molecule B.

In the crystal, the cations and anions are linked via intermolecular N—H···O and C—H···O hydrogen bonds (Table 1), which form a two dimensional network (Figure 2).

Experimental

2-Amino pyridinium picrate was prepared from a methanol solution containing equimolar amounts of picric acid and 2-amino pyridine. Single crystals suitable for X-ray analysis are obtained by repeated recrystallization of the salt from pure methanol.

Refinement

The N-bound H atom was located in a difference map and refined isotrophically. C-bound H atoms were positioned geometrically (C–H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms. A search for solvent-accessible voids in the crystal structure using PLATON shows a potential solvent volume of 114.0 Å3. However, this procedure showed no electron density in the voids. This indicates that the crystal lost nearly all of its solvent of crystallization by the time it was used for data collection, without collapse of the structure.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing of the title compound, viewed down the c axis.

Crystal data

C5H7N2+·C6H2N3O7Z = 4
Mr = 323.23F(000) = 664
Triclinic, P1Dx = 1.504 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.2543 (4) ÅCell parameters from 1241 reflections
b = 11.6588 (5) Åθ = 2.9–29.2°
c = 12.9883 (5) ŵ = 0.13 mm1
α = 114.641 (4)°T = 110 K
β = 100.204 (3)°Block, colourless
γ = 103.928 (3)°0.20 × 0.17 × 0.15 mm
V = 1427.16 (12) Å3

Data collection

Bruker SMART APEXII area-detector diffractometer6555 independent reflections
Radiation source: fine-focus sealed tube3011 reflections with I > 2σ(I)
graphiteRint = 0.020
ω and [var phi] scansθmax = 29.2°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −14→14
Tmin = 0.975, Tmax = 0.981k = −13→15
12905 measured reflectionsl = −17→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 0.90w = 1/[σ2(Fo2) + (0.0994P)2] where P = (Fo2 + 2Fc2)/3
6555 reflections(Δ/σ)max = 0.003
438 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1A0.09943 (15)0.43819 (16)0.43463 (15)0.0536 (5)
O1B0.23913 (17)0.3169 (2)0.1731 (2)0.0813 (7)
O2A0.27377 (16)0.3677 (2)0.54622 (19)0.0748 (6)
O2B0.40164 (17)0.3168 (2)0.3449 (2)0.0836 (7)
O3A0.20270 (17)0.33859 (19)0.67855 (17)0.0710 (6)
O3B0.36036 (19)0.1314 (2)0.3494 (2)0.0942 (8)
O4A−0.20594 (19)−0.04375 (18)0.48852 (19)0.0745 (6)
O4B−0.0709 (2)−0.1479 (2)0.2427 (2)0.0963 (8)
O5A−0.35954 (18)−0.03632 (19)0.36907 (19)0.0752 (6)
O5B−0.2227 (2)−0.1377 (2)0.1262 (2)0.1038 (9)
O6A−0.28300 (19)0.3105 (3)0.2612 (2)0.1067 (9)
O6B−0.14349 (18)0.1761 (2)−0.0134 (2)0.0871 (7)
O7A−0.09658 (17)0.40685 (19)0.26526 (17)0.0671 (6)
O7B0.03844 (19)0.3203 (2)0.0375 (2)0.0870 (7)
N1A0.17461 (19)0.6011 (2)0.33902 (18)0.0435 (5)
H1A0.124 (2)0.534 (3)0.342 (2)0.061 (8)*
N1B0.31598 (19)0.4800 (2)0.08244 (18)0.0478 (5)
H1B0.265 (2)0.409 (3)0.093 (2)0.070 (8)*
C2A0.1199 (3)0.6384 (3)0.2628 (2)0.0538 (7)
H2A0.03060.59450.21900.065*
C2B0.2668 (3)0.5098 (3)−0.0024 (3)0.0631 (8)
H2B0.17910.4623−0.05080.076*
C3A0.1918 (3)0.7381 (3)0.2486 (3)0.0637 (8)
H3A0.15420.76420.19440.076*
C3B0.3409 (3)0.6061 (3)−0.0190 (3)0.0681 (8)
H3B0.30690.6277−0.07810.082*
C4A0.3221 (3)0.8020 (3)0.3147 (3)0.0616 (8)
H4A0.37360.87270.30570.074*
C4B0.4689 (3)0.6726 (3)0.0531 (3)0.0621 (8)
H4B0.52300.74040.04270.075*
C5A0.3761 (3)0.7650 (2)0.3913 (2)0.0556 (7)
H5A0.46500.80960.43640.067*
C5B0.5183 (2)0.6432 (2)0.1379 (2)0.0527 (7)
H5B0.60590.69050.18650.063*
C6A0.2995 (2)0.6592 (2)0.4042 (2)0.0417 (6)
C6B0.4402 (2)0.5433 (2)0.1535 (2)0.0425 (6)
N7A0.3450 (2)0.6145 (2)0.4761 (2)0.0557 (6)
H7A0.427 (3)0.650 (3)0.514 (3)0.102 (8)*
H7B0.287 (3)0.528 (3)0.474 (3)0.102 (8)*
N7B0.4794 (3)0.5063 (3)0.2321 (2)0.0626 (7)
H7C0.547 (3)0.539 (3)0.265 (3)0.060 (10)*
H7D0.423 (3)0.450 (3)0.239 (3)0.070 (10)*
C8A0.0194 (2)0.3402 (2)0.43135 (19)0.0361 (5)
C8B0.1588 (2)0.2278 (2)0.1784 (2)0.0453 (6)
C9A0.0536 (2)0.2783 (2)0.5026 (2)0.0386 (5)
C9B0.1927 (2)0.1623 (2)0.2467 (2)0.0442 (6)
C10A−0.0308 (2)0.1731 (2)0.5044 (2)0.0411 (6)
H10A−0.00320.13710.55390.049*
C10B0.1087 (2)0.0598 (2)0.2493 (2)0.0451 (6)
H10B0.13730.02030.29510.054*
C11A−0.1580 (2)0.1204 (2)0.4318 (2)0.0385 (5)
C11B−0.0197 (2)0.0135 (2)0.1839 (2)0.0437 (6)
C12A−0.2003 (2)0.1743 (2)0.3635 (2)0.0389 (5)
H12A−0.28830.13840.31640.047*
C12B−0.0629 (2)0.0708 (2)0.1180 (2)0.0397 (6)
H12B−0.15170.03840.07420.048*
C13A−0.1151 (2)0.2806 (2)0.36324 (19)0.0376 (5)
C13B0.0225 (2)0.1740 (2)0.1161 (2)0.0379 (5)
N14A0.18554 (19)0.33227 (19)0.58082 (19)0.0484 (5)
N14B0.3273 (2)0.2071 (2)0.3173 (2)0.0579 (6)
N15A−0.2477 (2)0.00586 (19)0.4296 (2)0.0524 (6)
N15B−0.1106 (2)−0.0986 (2)0.1844 (2)0.0608 (6)
N16A−0.1678 (2)0.3358 (2)0.29156 (18)0.0493 (5)
N16B−0.0302 (2)0.2282 (2)0.04259 (18)0.0481 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.0453 (9)0.0539 (10)0.0624 (12)0.0011 (8)0.0076 (8)0.0413 (9)
O1B0.0462 (11)0.1026 (15)0.1073 (17)−0.0049 (10)0.0033 (10)0.0862 (14)
O2A0.0380 (10)0.1079 (16)0.0862 (15)0.0112 (10)0.0115 (10)0.0646 (13)
O2B0.0465 (11)0.0889 (15)0.1088 (18)0.0002 (9)−0.0047 (11)0.0659 (14)
O3A0.0661 (12)0.0843 (14)0.0561 (13)0.0079 (10)−0.0046 (10)0.0474 (11)
O3B0.0629 (13)0.1237 (19)0.133 (2)0.0345 (12)0.0134 (13)0.1004 (17)
O4A0.0800 (14)0.0627 (12)0.0970 (16)0.0110 (10)0.0246 (12)0.0615 (12)
O4B0.1063 (18)0.0910 (16)0.115 (2)0.0131 (13)0.0293 (15)0.0845 (16)
O5A0.0518 (12)0.0658 (13)0.0883 (16)−0.0106 (9)0.0091 (11)0.0419 (11)
O5B0.0642 (14)0.0994 (17)0.125 (2)−0.0206 (12)0.0024 (14)0.0711 (16)
O6A0.0481 (13)0.155 (2)0.149 (2)0.0152 (13)−0.0001 (13)0.125 (2)
O6B0.0508 (12)0.1075 (17)0.1051 (18)0.0075 (11)−0.0084 (11)0.0770 (15)
O7A0.0610 (12)0.0790 (14)0.0779 (14)0.0147 (10)0.0102 (10)0.0622 (12)
O7B0.0596 (12)0.1074 (17)0.1231 (19)0.0117 (11)0.0115 (12)0.0975 (16)
N1A0.0437 (12)0.0441 (12)0.0469 (13)0.0100 (10)0.0118 (10)0.0295 (10)
N1B0.0379 (11)0.0573 (13)0.0522 (13)0.0089 (10)0.0078 (10)0.0366 (11)
C2A0.0578 (16)0.0597 (16)0.0533 (17)0.0205 (13)0.0128 (13)0.0374 (14)
C2B0.0525 (16)0.078 (2)0.0618 (19)0.0157 (14)0.0065 (14)0.0446 (16)
C3A0.082 (2)0.077 (2)0.0677 (19)0.0430 (17)0.0314 (17)0.0548 (17)
C3B0.074 (2)0.083 (2)0.077 (2)0.0290 (17)0.0280 (17)0.0624 (19)
C4A0.073 (2)0.0548 (17)0.081 (2)0.0231 (15)0.0380 (17)0.0486 (16)
C4B0.0669 (19)0.0553 (17)0.076 (2)0.0164 (14)0.0293 (16)0.0416 (16)
C5A0.0527 (16)0.0488 (16)0.0662 (19)0.0100 (12)0.0244 (14)0.0306 (14)
C5B0.0447 (14)0.0481 (15)0.0608 (18)0.0077 (11)0.0136 (13)0.0279 (13)
C6A0.0453 (14)0.0408 (14)0.0435 (14)0.0143 (11)0.0183 (12)0.0230 (11)
C6B0.0379 (13)0.0460 (14)0.0438 (15)0.0119 (11)0.0133 (11)0.0231 (12)
N7A0.0419 (13)0.0706 (16)0.0612 (16)0.0119 (12)0.0070 (11)0.0453 (13)
N7B0.0372 (14)0.0818 (19)0.0681 (18)0.0050 (13)0.0020 (13)0.0498 (15)
C8A0.0390 (12)0.0337 (13)0.0361 (13)0.0073 (10)0.0102 (10)0.0210 (10)
C8B0.0393 (13)0.0530 (15)0.0489 (15)0.0108 (11)0.0113 (11)0.0332 (13)
C9A0.0371 (12)0.0378 (13)0.0385 (13)0.0090 (10)0.0062 (10)0.0206 (11)
C9B0.0371 (13)0.0518 (15)0.0475 (15)0.0125 (11)0.0105 (11)0.0301 (12)
C10A0.0508 (14)0.0338 (13)0.0418 (14)0.0122 (10)0.0128 (11)0.0232 (11)
C10B0.0503 (14)0.0494 (15)0.0479 (15)0.0201 (12)0.0178 (12)0.0321 (12)
C11A0.0411 (13)0.0319 (12)0.0413 (14)0.0061 (10)0.0139 (11)0.0198 (11)
C11B0.0489 (14)0.0394 (14)0.0460 (15)0.0121 (11)0.0229 (12)0.0221 (12)
C12A0.0339 (12)0.0365 (13)0.0371 (13)0.0058 (9)0.0050 (10)0.0155 (11)
C12B0.0375 (12)0.0401 (13)0.0387 (13)0.0111 (10)0.0123 (10)0.0177 (11)
C13A0.0404 (13)0.0379 (13)0.0327 (13)0.0104 (10)0.0067 (10)0.0191 (11)
C13B0.0408 (13)0.0402 (13)0.0374 (13)0.0136 (10)0.0133 (10)0.0229 (11)
N14A0.0434 (12)0.0460 (12)0.0535 (14)0.0072 (9)0.0024 (10)0.0315 (11)
N14B0.0453 (12)0.0751 (14)0.0697 (16)0.0203 (9)0.0157 (11)0.0506 (13)
N15A0.0556 (14)0.0400 (12)0.0576 (14)0.0050 (10)0.0217 (11)0.0249 (11)
N15B0.0629 (15)0.0514 (14)0.0633 (16)0.0033 (11)0.0245 (13)0.0306 (12)
N16A0.0453 (12)0.0518 (13)0.0482 (13)0.0064 (10)0.0013 (10)0.0328 (11)
N16B0.0438 (12)0.0560 (13)0.0491 (13)0.0166 (10)0.0112 (10)0.0311 (11)

Geometric parameters (Å, °)

O1A—C8A1.252 (2)C5A—C6A1.416 (3)
O1B—C8B1.237 (3)C5A—H5A0.9500
O2A—N14A1.214 (3)C5B—C6B1.393 (3)
O2B—N14B1.208 (3)C5B—H5B0.9500
O3A—N14A1.217 (2)C6A—N7A1.331 (3)
O3B—N14B1.226 (2)C6B—N7B1.312 (3)
O4A—N15A1.230 (3)N7A—H7A0.87 (3)
O4B—N15B1.212 (3)N7A—H7B1.05 (3)
O5A—N15A1.214 (3)N7B—H7C0.72 (3)
O5B—N15B1.212 (3)N7B—H7D0.84 (3)
O6A—N16A1.209 (2)C8A—C13A1.436 (3)
O6B—N16B1.206 (2)C8A—C9A1.446 (3)
O7A—N16A1.208 (2)C8B—C13B1.441 (3)
O7B—N16B1.197 (2)C8B—C9B1.450 (3)
N1A—C6A1.339 (3)C9A—C10A1.371 (3)
N1A—C2A1.350 (3)C9A—N14A1.454 (3)
N1A—H1A0.87 (3)C9B—C10B1.351 (3)
N1B—C6B1.352 (3)C9B—N14B1.461 (3)
N1B—C2B1.356 (3)C10A—C11A1.389 (3)
N1B—H1B0.96 (3)C10A—H10A0.9500
C2A—C3A1.348 (3)C10B—C11B1.381 (3)
C2A—H2A0.9500C10B—H10B0.9500
C2B—C3B1.347 (4)C11A—C12A1.367 (3)
C2B—H2B0.9500C11A—N15A1.453 (3)
C3A—C4A1.391 (4)C11B—C12B1.379 (3)
C3A—H3A0.9500C11B—N15B1.457 (3)
C3B—C4B1.390 (4)C12A—C13A1.374 (3)
C3B—H3B0.9500C12A—H12A0.9500
C4A—C5A1.348 (3)C12B—C13B1.359 (3)
C4A—H4A0.9500C12B—H12B0.9500
C4B—C5B1.351 (4)C13A—N16A1.456 (3)
C4B—H4B0.9500C13B—N16B1.465 (3)
C6A—N1A—C2A123.2 (2)C10A—C9A—C8A124.6 (2)
C6A—N1A—H1A121.2 (17)C10A—C9A—N14A116.76 (19)
C2A—N1A—H1A115.6 (17)C8A—C9A—N14A118.66 (19)
C6B—N1B—C2B122.5 (2)C10B—C9B—C8B124.8 (2)
C6B—N1B—H1B115.8 (15)C10B—C9B—N14B116.4 (2)
C2B—N1B—H1B121.7 (15)C8B—C9B—N14B118.8 (2)
C3A—C2A—N1A120.1 (3)C9A—C10A—C11A118.2 (2)
C3A—C2A—H2A120.0C9A—C10A—H10A120.9
N1A—C2A—H2A120.0C11A—C10A—H10A120.9
C3B—C2B—N1B120.8 (3)C9B—C10B—C11B118.6 (2)
C3B—C2B—H2B119.6C9B—C10B—H10B120.7
N1B—C2B—H2B119.6C11B—C10B—H10B120.7
C2A—C3A—C4A118.9 (2)C12A—C11A—C10A121.5 (2)
C2A—C3A—H3A120.6C12A—C11A—N15A119.6 (2)
C4A—C3A—H3A120.6C10A—C11A—N15A118.9 (2)
C2B—C3B—C4B117.8 (3)C12B—C11B—C10B121.4 (2)
C2B—C3B—H3B121.1C12B—C11B—N15B119.6 (2)
C4B—C3B—H3B121.1C10B—C11B—N15B119.0 (2)
C5A—C4A—C3A120.8 (2)C11A—C12A—C13A119.8 (2)
C5A—C4A—H4A119.6C11A—C12A—H12A120.1
C3A—C4A—H4A119.6C13A—C12A—H12A120.1
C5B—C4B—C3B121.7 (2)C13B—C12B—C11B119.5 (2)
C5B—C4B—H4B119.2C13B—C12B—H12B120.3
C3B—C4B—H4B119.2C11B—C12B—H12B120.3
C4A—C5A—C6A119.6 (3)C12A—C13A—C8A123.6 (2)
C4A—C5A—H5A120.2C12A—C13A—N16A116.78 (19)
C6A—C5A—H5A120.2C8A—C13A—N16A119.61 (19)
C4B—C5B—C6B119.7 (2)C12B—C13B—C8B123.8 (2)
C4B—C5B—H5B120.2C12B—C13B—N16B116.4 (2)
C6B—C5B—H5B120.2C8B—C13B—N16B119.77 (19)
N7A—C6A—N1A118.9 (2)O2A—N14A—O3A122.7 (2)
N7A—C6A—C5A123.7 (2)O2A—N14A—C9A119.2 (2)
N1A—C6A—C5A117.4 (2)O3A—N14A—C9A118.1 (2)
N7B—C6B—N1B118.1 (2)O2B—N14B—O3B121.8 (2)
N7B—C6B—C5B124.3 (2)O2B—N14B—C9B120.4 (2)
N1B—C6B—C5B117.6 (2)O3B—N14B—C9B117.7 (2)
C6A—N7A—H7A118 (2)O5A—N15A—O4A123.5 (2)
C6A—N7A—H7B120.8 (17)O5A—N15A—C11A118.3 (2)
H7A—N7A—H7B120 (3)O4A—N15A—C11A118.2 (2)
C6B—N7B—H7C114 (2)O4B—N15B—O5B123.4 (2)
C6B—N7B—H7D117.1 (19)O4B—N15B—C11B118.7 (2)
H7C—N7B—H7D129 (3)O5B—N15B—C11B117.9 (2)
O1A—C8A—C13A125.4 (2)O7A—N16A—O6A121.4 (2)
O1A—C8A—C9A122.2 (2)O7A—N16A—C13A120.0 (2)
C13A—C8A—C9A112.30 (19)O6A—N16A—C13A118.5 (2)
O1B—C8B—C13B124.9 (2)O7B—N16B—O6B121.4 (2)
O1B—C8B—C9B123.2 (2)O7B—N16B—C13B120.5 (2)
C13B—C8B—C9B111.9 (2)O6B—N16B—C13B118.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1B—H1B···O1B0.96 (3)1.79 (3)2.681 (3)152 (2)
N1B—H1B···O7B0.96 (3)2.36 (3)3.035 (3)127 (2)
N7B—H7D···O1B0.84 (3)2.04 (3)2.784 (3)148 (3)
N7B—H7D···O2B0.84 (3)2.47 (3)3.165 (3)141 (2)
N1A—H1A···O1A0.87 (3)1.97 (3)2.726 (2)145 (2)
N1A—H1A···O7A0.87 (3)2.34 (3)3.031 (3)137 (2)
N7A—H7B···O2A1.05 (3)2.40 (3)3.329 (3)147 (2)
C10A—H10A···O4Bi0.952.573.438 (3)153
N7A—H7A···O2Bii0.87 (3)2.24 (3)3.029 (3)152 (3)
N7B—H7C···O2Aii0.72 (3)2.49 (3)3.137 (3)149 (3)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5016).

References

  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • In, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367–369.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961–967.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography