PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1682.
Published online 2010 June 16. doi:  10.1107/S1600536810022427
PMCID: PMC3006737

N-(3-Eth­oxy­phen­yl)-4-methyl­benzene­sulfonamide

Abstract

In the title compound, C15H17NO3S, the two aromatic rings make a dihedral angle of 69.42 (9)° with each other and the bridging C—N—S—C torsion angle is 65.76 (16)°. Weak intra­molecular C—H(...)O inter­actions may affect the mol­ecular conformation. Two neighbouring mol­ecules generate a hydrogen-bonded dimer about a center of inversion through a pair of inter­molecular N—H(...)O inter­actions, forming an R 2 2(8) ring motif. Furthermore, two inter­molecular C—H(...)π inter­actions contribute to the stability of the crystal packing.

Related literature

For the biological activity of sulfonamides, see: Berredjem et al. (2000 [triangle]); Lee & Lee (2002 [triangle]); Soledade et al. (2006 [triangle]); Xiao & Timberlake (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1682-scheme1.jpg

Experimental

Crystal data

  • C15H17NO3S
  • M r = 291.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1682-efi1.jpg
  • a = 8.4612 (3) Å
  • b = 13.1862 (5) Å
  • c = 13.4237 (4) Å
  • β = 99.326 (2)°
  • V = 1477.90 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 296 K
  • 0.34 × 0.18 × 0.16 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • 13221 measured reflections
  • 3608 independent reflections
  • 2532 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.118
  • S = 1.00
  • 3608 reflections
  • 186 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810022427/sj5019sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022427/sj5019Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission for financial support to purchase the diffractometer.

supplementary crystallographic information

Comment

Sulfonamide is an important functionality found in a number of synthetic as well as natural compounds possessing versatile type of biological activities e.g. herbicidal, anti-malarial, anti-convulsant and anti-hypertensive (Soledade et al., 2006; Xiao & Timberlake, 2000; Berredjem et al., 2000; Lee & Lee, 2002) activities. In the present paper, the structure of N-(3-ethoxyphenyl)-4-methylbenzene sulfonamide has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing compounds.

In the title compound (I), Fig. 1), the dihedral angle between the two aromatic rings (C2–C7 and C8–C13) is 69.42 (9)° and the bridging C5—S1—N1—C8 torsion angle is 65.76 (16)°. In the crystal structure, two neighbouring molecules generate a hydrogen-bonded dimer about a center of inversion through a pair of intermolecular N—H···O interactions, forming an R22(8) ring motif (Table 1, Fig. 2).

In the structure, two intermolecular C—H···π interactions contribute to the stability of crystal packing (Table 1).

Experimental

A mixture of 4-methyl benzene sulfonyl chloride (10.0 mmoles; 1.90 g), 3-ethoxy aniline (meta-phenetidine) (10.0 mmoles; 1.25 g), aqueous sodium carbonate (10%; 10.0 ml) and water (25 ml) was stirred for half an hour at room temperature. The crude mixture was washed with water and dried. Product was dissolved in methanol and crystallized by slow evaporation of the solvent. Yield 72%. 4-Methyl benzene sulfonyl chloride and meta-phenetidine were purchased from Sigma Aldrich while all other chemicals involved were obtained from Merk, Germany.

Refinement

H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97Å and Uiso(H) = 1.2–1.5Ueq (C). The amino H-atom was found in a difference Fourier map, and refined with a distance restraint of N–H 0.86 (2) Å. The H-atom Uiso parameter was fixed at 1.2Ueq(N) for the N—H group.

Figures

Fig. 1.
The title molecule of (I), with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
View of the N—H···O dimer in the unit cell of (I). H-atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

C15H17NO3SF(000) = 616
Mr = 291.37Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4223 reflections
a = 8.4612 (3) Åθ = 2.9–26.1°
b = 13.1862 (5) ŵ = 0.23 mm1
c = 13.4237 (4) ÅT = 296 K
β = 99.326 (2)°Needle, colourless
V = 1477.90 (9) Å30.34 × 0.18 × 0.16 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer2532 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.036
graphiteθmax = 28.3°, θmin = 3.4°
[var phi] and ω scansh = −11→11
13221 measured reflectionsk = −17→15
3608 independent reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0564P)2 + 0.2791P] where P = (Fo2 + 2Fc2)/3
3608 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = −0.31 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.26616 (5)0.52544 (3)0.38686 (3)0.0408 (1)
O10.17864 (15)0.57574 (10)0.30139 (9)0.0518 (4)
O20.32376 (14)0.58201 (9)0.47639 (9)0.0495 (4)
O30.30011 (17)0.42300 (12)−0.00035 (9)0.0653 (5)
N10.42808 (16)0.47848 (12)0.35383 (11)0.0439 (5)
C1−0.1104 (3)0.1674 (2)0.4986 (2)0.1033 (13)
C2−0.0197 (2)0.25798 (16)0.47044 (18)0.0623 (7)
C30.0767 (2)0.31285 (17)0.54323 (16)0.0639 (8)
C40.1627 (2)0.39529 (15)0.51876 (14)0.0532 (6)
C50.15151 (18)0.42365 (13)0.41926 (13)0.0414 (5)
C60.0547 (2)0.37042 (16)0.34460 (15)0.0562 (7)
C7−0.0295 (2)0.28784 (18)0.37117 (18)0.0673 (8)
C80.43243 (18)0.41644 (13)0.26721 (12)0.0402 (5)
C90.5253 (2)0.32988 (15)0.28030 (15)0.0548 (6)
C100.5428 (3)0.27331 (17)0.19682 (16)0.0668 (8)
C110.4705 (2)0.30085 (16)0.10134 (15)0.0591 (7)
C120.3773 (2)0.38714 (15)0.08949 (13)0.0484 (6)
C130.3581 (2)0.44493 (14)0.17269 (13)0.0466 (5)
C140.3347 (3)0.37772 (18)−0.09048 (13)0.0624 (7)
C150.2431 (3)0.4353 (2)−0.17758 (16)0.0836 (9)
H1A−0.201000.155200.446900.1550*
H1B−0.146800.180100.561600.1550*
H1C−0.041600.109100.505200.1550*
H1N0.486 (2)0.4612 (14)0.4062 (12)0.0530*
H30.084000.293900.610600.0770*
H40.227800.431400.569000.0640*
H60.046300.389900.277400.0670*
H7−0.094400.251500.321000.0810*
H90.575000.310300.344300.0660*
H100.605100.214900.205000.0800*
H110.484200.261800.045700.0710*
H130.294900.503000.164700.0560*
H14A0.302400.30710−0.093700.0750*
H14B0.448700.38110−0.092400.0750*
H15A0.130400.42930−0.176300.1250*
H15B0.267000.40800−0.239800.1250*
H15C0.273500.50550−0.172400.1250*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0391 (2)0.0417 (2)0.0397 (2)0.0033 (2)0.0004 (2)−0.0018 (2)
O10.0518 (7)0.0531 (8)0.0479 (7)0.0098 (6)0.0001 (6)0.0050 (6)
O20.0518 (7)0.0455 (7)0.0489 (7)0.0015 (6)0.0017 (5)−0.0086 (5)
O30.0699 (9)0.0826 (11)0.0410 (7)0.0166 (8)0.0018 (6)−0.0055 (7)
N10.0358 (7)0.0540 (9)0.0399 (8)0.0022 (7)0.0003 (6)−0.0013 (7)
C10.0842 (17)0.085 (2)0.149 (3)−0.0305 (15)0.0439 (18)−0.0015 (18)
C20.0435 (10)0.0584 (13)0.0886 (15)−0.0062 (9)0.0214 (10)−0.0050 (11)
C30.0656 (12)0.0657 (14)0.0642 (13)−0.0056 (11)0.0218 (10)0.0055 (10)
C40.0529 (10)0.0608 (12)0.0452 (10)−0.0080 (9)0.0060 (8)−0.0050 (8)
C50.0345 (8)0.0430 (10)0.0457 (9)0.0040 (7)0.0037 (7)−0.0041 (7)
C60.0475 (10)0.0644 (13)0.0532 (11)−0.0058 (9)−0.0022 (8)−0.0056 (9)
C70.0462 (11)0.0712 (15)0.0816 (15)−0.0128 (10)0.0013 (10)−0.0184 (12)
C80.0346 (8)0.0438 (10)0.0425 (9)−0.0024 (7)0.0069 (7)0.0006 (7)
C90.0572 (11)0.0536 (12)0.0514 (10)0.0122 (9)0.0018 (9)0.0024 (9)
C100.0728 (13)0.0579 (13)0.0669 (13)0.0228 (11)0.0030 (11)−0.0065 (10)
C110.0590 (11)0.0627 (13)0.0549 (11)0.0076 (10)0.0076 (9)−0.0155 (9)
C120.0431 (9)0.0583 (11)0.0428 (9)0.0007 (8)0.0044 (7)−0.0032 (8)
C130.0441 (9)0.0489 (10)0.0459 (9)0.0067 (8)0.0049 (7)0.0001 (8)
C140.0626 (12)0.0828 (15)0.0420 (10)−0.0107 (11)0.0092 (9)−0.0129 (10)
C150.0858 (16)0.116 (2)0.0468 (12)−0.0155 (16)0.0038 (11)0.0010 (13)

Geometric parameters (Å, °)

S1—O11.4245 (13)C11—C121.379 (3)
S1—O21.4313 (13)C12—C131.383 (3)
S1—N11.6291 (15)C14—C151.500 (3)
S1—C51.7517 (17)C1—H1A0.9600
O3—C121.360 (2)C1—H1B0.9600
O3—C141.422 (2)C1—H1C0.9600
N1—C81.427 (2)C3—H30.9300
N1—H1N0.821 (16)C4—H40.9300
C1—C21.501 (3)C6—H60.9300
C2—C71.379 (3)C7—H70.9300
C2—C31.373 (3)C9—H90.9300
C3—C41.377 (3)C10—H100.9300
C4—C51.375 (3)C11—H110.9300
C5—C61.379 (3)C13—H130.9300
C6—C71.379 (3)C14—H14A0.9700
C8—C131.374 (2)C14—H14B0.9700
C8—C91.381 (3)C15—H15A0.9600
C9—C101.374 (3)C15—H15B0.9600
C10—C111.377 (3)C15—H15C0.9600
S1···H133.0500H1N···O2ii2.140 (17)
S1···H10i3.0600H3···H1B2.4700
O1···C133.019 (2)H4···O22.5400
O2···N1ii2.9476 (19)H4···H15Bvii2.5500
O1···H132.4200H6···O12.6900
O1···H7iii2.8600H7···H1A2.4000
O1···H10i2.6000H7···O1vi2.8600
O1···H15Aiv2.8700H9···H1N2.3300
O1···H62.6900H9···O2ii2.8100
O2···H42.5400H10···S1viii3.0600
O2···H11i2.9200H10···O1viii2.6000
O2···H1Nii2.140 (17)H11···C142.5600
O2···H9ii2.8100H11···H14A2.3000
N1···O2ii2.9476 (19)H11···H14B2.4100
C6···C83.569 (2)H11···O2viii2.9200
C8···C63.569 (2)H13···S13.0500
C13···O13.019 (2)H13···O12.4200
C7···H14Av3.0400H13···H1Aiii2.5500
C11···H14A2.7700H14A···C112.7700
C11···H14B2.7900H14A···H112.3000
C14···H112.5600H14A···C7ix3.0400
H1A···H72.4000H14B···C112.7900
H1A···H13vi2.5500H14B···H112.4100
H1B···H32.4700H15A···O1iv2.8700
H1N···H92.3300H15B···H4x2.5500
O1—S1—O2119.70 (8)C2—C1—H1B109.00
O1—S1—N1107.95 (8)C2—C1—H1C109.00
O1—S1—C5108.68 (8)H1A—C1—H1B109.00
O2—S1—N1103.87 (7)H1A—C1—H1C109.00
O2—S1—C5108.53 (8)H1B—C1—H1C110.00
N1—S1—C5107.48 (8)C2—C3—H3119.00
C12—O3—C14118.24 (16)C4—C3—H3119.00
S1—N1—C8125.00 (11)C3—C4—H4120.00
C8—N1—H1N116.6 (12)C5—C4—H4120.00
S1—N1—H1N106.5 (12)C5—C6—H6121.00
C1—C2—C7121.2 (2)C7—C6—H6121.00
C3—C2—C7118.23 (19)C2—C7—H7119.00
C1—C2—C3120.6 (2)C6—C7—H7119.00
C2—C3—C4121.5 (2)C8—C9—H9121.00
C3—C4—C5119.36 (17)C10—C9—H9121.00
S1—C5—C4119.72 (13)C9—C10—H10119.00
C4—C5—C6120.44 (17)C11—C10—H10119.00
S1—C5—C6119.81 (14)C10—C11—H11120.00
C5—C6—C7118.99 (19)C12—C11—H11121.00
C2—C7—C6121.5 (2)C8—C13—H13120.00
N1—C8—C9117.35 (15)C12—C13—H13120.00
N1—C8—C13121.82 (15)O3—C14—H14A110.00
C9—C8—C13120.63 (16)O3—C14—H14B110.00
C8—C9—C10118.64 (18)C15—C14—H14A110.00
C9—C10—C11121.7 (2)C15—C14—H14B110.00
C10—C11—C12118.99 (19)H14A—C14—H14B108.00
O3—C12—C13114.97 (17)C14—C15—H15A109.00
O3—C12—C11124.94 (17)C14—C15—H15B109.00
C11—C12—C13120.09 (17)C14—C15—H15C109.00
C8—C13—C12119.93 (17)H15A—C15—H15B110.00
O3—C14—C15107.41 (19)H15A—C15—H15C109.00
C2—C1—H1A109.00H15B—C15—H15C109.00
O1—S1—N1—C8−51.29 (16)C1—C2—C3—C4179.04 (19)
O2—S1—N1—C8−179.35 (14)C2—C3—C4—C50.2 (3)
C5—S1—N1—C865.76 (16)C3—C4—C5—C60.3 (3)
O1—S1—C5—C4−147.64 (14)C3—C4—C5—S1−177.61 (14)
O2—S1—C5—C4−15.96 (16)C4—C5—C6—C7−0.6 (3)
N1—S1—C5—C495.79 (15)S1—C5—C6—C7177.28 (14)
O1—S1—C5—C634.49 (16)C5—C6—C7—C20.4 (3)
O2—S1—C5—C6166.16 (14)N1—C8—C9—C10−174.51 (18)
N1—S1—C5—C6−82.09 (15)C9—C8—C13—C12−0.6 (3)
C14—O3—C12—C13169.88 (18)N1—C8—C13—C12174.16 (16)
C12—O3—C14—C15−176.27 (18)C13—C8—C9—C100.5 (3)
C14—O3—C12—C11−9.5 (3)C8—C9—C10—C110.0 (3)
S1—N1—C8—C9−133.67 (15)C9—C10—C11—C12−0.4 (3)
S1—N1—C8—C1351.4 (2)C10—C11—C12—C130.3 (3)
C3—C2—C7—C60.1 (3)C10—C11—C12—O3179.66 (19)
C1—C2—C7—C6−179.4 (2)O3—C12—C13—C8−179.21 (16)
C7—C2—C3—C4−0.4 (3)C11—C12—C13—C80.2 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x, y+1/2, −z+1/2; (iv) −x, −y+1, −z; (v) x, −y+1/2, z+1/2; (vi) −x, y−1/2, −z+1/2; (vii) x, y, z+1; (viii) −x+1, y−1/2, −z+1/2; (ix) x, −y+1/2, z−1/2; (x) x, y, z−1.

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2ii0.821 (16)2.140 (17)2.9476 (19)167.9 (16)
C4—H4···O20.932.542.914 (2)104
C13—H13···O10.932.423.019 (2)122
C14—H14A···Cg1ix0.972.903.752 (3)147
C15—H15C···Cg2xi0.962.963.763 (3)147

Symmetry codes: (ii) −x+1, −y+1, −z+1; (ix) x, −y+1/2, z−1/2; (xi) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5019).

References

  • Berredjem, M., Re’ gainia, Z., Djahoudi, A., Aouf, N. E., Dewinter, G. & Montero, J. L. (2000). Phosphorus Sulfur Silicon Relat. Elem.165, 249–264.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc.23, 167–169.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem.14, 4958–4979. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem.37, 773–777.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography