PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1523.
Published online 2010 June 5. doi:  10.1107/S1600536810020052
PMCID: PMC3006736

2,2′,6,6′-Tetra­ethyl-4,4′-methyl­enedibenzonitrile

Abstract

The asymmetric unit of the title compound, C23H26N2, contains one half-mol­ecule, which is completed by the operation of a crystallographic twofold axis. In the mol­ecule, the two benzene rings form a dihedral angle of 77.09 (7)°.

Related literature

For applications of aromatic nitriles, see: Debasree et al. (2009 [triangle]); Lal Dhar et al. (2009 [triangle]); Ren et al. (2009 [triangle]); Zhou et al. (2009 [triangle]). For the preparation of the title compound, see: Donald et al. (1955 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1523-scheme1.jpg

Experimental

Crystal data

  • C23H26N2
  • M r = 330.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1523-efi1.jpg
  • a = 16.016 (3) Å
  • b = 9.3218 (19) Å
  • c = 13.977 (3) Å
  • β = 115.55 (3)°
  • V = 1882.6 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 290 K
  • 0.16 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART 4K CCD area-detector diffractometer
  • 8636 measured reflections
  • 2055 independent reflections
  • 1405 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.111
  • S = 1.16
  • 2055 reflections
  • 117 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810020052/cv2718sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020052/cv2718Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Central China Normal University for financial support.

supplementary crystallographic information

Comment

Aromatic nitriles are important intermediates in the synthesis of pharmaceuticals, agrochemicals, herbicides, dyes and pigments, and serve as precursors for many useful compounds including benzoic acid derivatives, benzylamines, benzaldehydes, and heterocycles (Debasree et al., 2009; Lal Dhar et al., 2009; Ren et al., 2009; Zhou et al., 2009).

In this paper, we report the synthesis and crystal structure of the title compound (Fig. 1). In the molecule, two benzene rings form a dihedral angle of 77.09 (7)°, and N···N separation is 11.67 (3)Å. The crystal packing doesn't exhibit hydrogen bonds or classical interactions.

Experimental

The title compound has been synthesized following the known procedure (Donald et al., 1955). To an ice-bath cooled solution of 4,4'-methylenebis(2,6-diethylaniline) and sodium nitrite in water was added dropwise concentrated hydrogen chloride, keeping the temperature at 0-5oC for 30 minutes. Then added potassium iodide into the mixed solution, and the white solid bis(3,5-diethyl-4-iodophenyl)methane was obtained. It reacted with cyanocopper in DMF solution at 180oC for 1 hour, then the title compound was obtained. X-ray quality crystal of the title compound was obtained by slow evaporation from chloroform solution at room temperature.

Figures

Fig. 1.
A view of (I), showing the atom-labelling scheme and 40% probability displacement ellipsoids [symmetry code: (a) -x, y, 1/2-z]. H atoms omitted for clarity.

Crystal data

C23H26N2F(000) = 712
Mr = 330.46Dx = 1.166 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2049 reflections
a = 16.016 (3) Åθ = 2.2–23.2°
b = 9.3218 (19) ŵ = 0.07 mm1
c = 13.977 (3) ÅT = 290 K
β = 115.55 (3)°Block, colourless
V = 1882.6 (7) Å30.16 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART 4K CCD area-detector diffractometer1405 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
graphiteθmax = 27.0°, θmin = 3.2°
phi and ω scansh = −20→20
8636 measured reflectionsk = −11→11
2055 independent reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.111w = 1/[σ2(Fo2) + (0.0506P)2 + 0.6433P] where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.003
2055 reflectionsΔρmax = 0.24 e Å3
117 parametersΔρmin = −0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0066 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.15377 (8)0.06614 (13)0.12294 (10)0.0215 (3)
C20.17923 (8)0.06280 (13)0.23286 (10)0.0214 (3)
C30.12805 (8)0.14471 (13)0.27126 (10)0.0217 (3)
H30.14440.14490.34370.026*
C40.05275 (8)0.22672 (14)0.20424 (10)0.0222 (3)
C50.02799 (8)0.22437 (14)0.09566 (10)0.0239 (3)
H5−0.02330.27680.05040.029*
C60.07756 (8)0.14604 (14)0.05298 (10)0.0227 (3)
C70.26297 (9)−0.01923 (15)0.30817 (10)0.0254 (3)
H7A0.2723−0.10230.27210.030*
H7B0.2524−0.05300.36770.030*
C80.34907 (10)0.07400 (17)0.34864 (13)0.0379 (4)
H8A0.36150.10310.29020.057*
H8B0.40080.02050.39840.057*
H8C0.33940.15740.38290.057*
C90.20907 (9)−0.01286 (15)0.08264 (10)0.0251 (3)
C100.05135 (9)0.15086 (15)−0.06463 (10)0.0277 (3)
H10A−0.01500.1648−0.10280.033*
H10B0.06640.0595−0.08650.033*
C110.10057 (11)0.26976 (19)−0.09430 (12)0.0392 (4)
H11A0.08490.3607−0.07420.059*
H11B0.08170.2684−0.16950.059*
H11C0.16620.2554−0.05800.059*
C120.00000.3165 (2)0.25000.0265 (4)
H120.04320.37780.30530.032*
N10.25510 (9)−0.07416 (14)0.05233 (10)0.0370 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0215 (6)0.0215 (7)0.0221 (6)−0.0050 (5)0.0099 (5)−0.0016 (5)
C20.0203 (6)0.0210 (7)0.0229 (6)−0.0039 (5)0.0094 (5)0.0005 (5)
C30.0223 (6)0.0245 (7)0.0183 (6)−0.0037 (5)0.0088 (5)0.0003 (5)
C40.0203 (6)0.0215 (6)0.0263 (7)−0.0048 (5)0.0113 (5)−0.0001 (5)
C50.0199 (6)0.0241 (7)0.0246 (7)−0.0025 (5)0.0066 (5)0.0033 (5)
C60.0226 (6)0.0235 (7)0.0203 (6)−0.0075 (5)0.0077 (5)0.0002 (5)
C70.0275 (7)0.0270 (7)0.0212 (7)0.0034 (6)0.0101 (6)0.0026 (5)
C80.0263 (7)0.0374 (9)0.0385 (9)0.0013 (6)0.0031 (6)0.0020 (7)
C90.0283 (7)0.0266 (7)0.0201 (6)−0.0042 (6)0.0102 (6)−0.0004 (5)
C100.0273 (7)0.0327 (8)0.0195 (7)−0.0039 (6)0.0066 (6)0.0002 (6)
C110.0393 (8)0.0505 (10)0.0266 (8)−0.0096 (7)0.0132 (7)0.0069 (7)
C120.0255 (9)0.0243 (10)0.0309 (10)0.0000.0132 (8)0.000
N10.0443 (7)0.0378 (7)0.0333 (7)0.0020 (6)0.0209 (6)−0.0010 (6)

Geometric parameters (Å, °)

C1—C61.4040 (18)C7—H7B0.9700
C1—C21.4096 (18)C8—H8A0.9600
C1—C91.4402 (18)C8—H8B0.9600
C2—C31.3865 (18)C8—H8C0.9600
C2—C71.5079 (18)C9—N11.1486 (17)
C3—C41.3935 (18)C10—C111.5178 (19)
C3—H30.9300C10—H10A0.9700
C4—C51.3935 (18)C10—H10B0.9700
C4—C121.5129 (16)C11—H11A0.9600
C5—C61.3885 (19)C11—H11B0.9600
C5—H50.9300C11—H11C0.9600
C6—C101.5115 (18)C12—C4i1.5130 (16)
C7—C81.5179 (19)C12—H120.9700
C7—H7A0.9700
C6—C1—C2121.79 (11)H7A—C7—H7B108.0
C6—C1—C9119.69 (11)C7—C8—H8A109.5
C2—C1—C9118.51 (11)C7—C8—H8B109.5
C3—C2—C1117.92 (11)H8A—C8—H8B109.5
C3—C2—C7120.36 (11)C7—C8—H8C109.5
C1—C2—C7121.61 (11)H8A—C8—H8C109.5
C2—C3—C4121.78 (12)H8B—C8—H8C109.5
C2—C3—H3119.1N1—C9—C1178.28 (14)
C4—C3—H3119.1C6—C10—C11112.67 (11)
C5—C4—C3118.74 (12)C6—C10—H10A109.1
C5—C4—C12121.37 (11)C11—C10—H10A109.1
C3—C4—C12119.89 (10)C6—C10—H10B109.1
C6—C5—C4121.96 (12)C11—C10—H10B109.1
C6—C5—H5119.0H10A—C10—H10B107.8
C4—C5—H5119.0C10—C11—H11A109.5
C5—C6—C1117.78 (11)C10—C11—H11B109.5
C5—C6—C10120.63 (12)H11A—C11—H11B109.5
C1—C6—C10121.57 (12)C10—C11—H11C109.5
C2—C7—C8111.18 (11)H11A—C11—H11C109.5
C2—C7—H7A109.4H11B—C11—H11C109.5
C8—C7—H7A109.4C4—C12—C4i112.85 (15)
C2—C7—H7B109.4C4—C12—H12109.0
C8—C7—H7B109.4
C6—C1—C2—C3−1.79 (18)C4—C5—C6—C10−177.34 (11)
C9—C1—C2—C3177.02 (11)C2—C1—C6—C50.88 (18)
C6—C1—C2—C7−177.97 (11)C9—C1—C6—C5−177.92 (11)
C9—C1—C2—C70.85 (18)C2—C1—C6—C10179.15 (11)
C1—C2—C3—C40.93 (18)C9—C1—C6—C100.35 (18)
C7—C2—C3—C4177.15 (11)C3—C2—C7—C8−86.55 (15)
C2—C3—C4—C50.80 (18)C1—C2—C7—C889.53 (15)
C2—C3—C4—C12−178.92 (11)C5—C6—C10—C1189.82 (15)
C3—C4—C5—C6−1.77 (19)C1—C6—C10—C11−88.39 (15)
C12—C4—C5—C6177.94 (12)C5—C4—C12—C4i112.50 (12)
C4—C5—C6—C10.94 (18)C3—C4—C12—C4i−67.79 (10)

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2718).

References

  • Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Debasree, S., Amit, S. & Brindaban, C. R. (2009). Tetrahedron Lett.50, 6088–6091.
  • Donald, L. V., Jonthan, L. H. & Henry, C. W. (1955). J. Org. Chem.20, 797–802.
  • Lal Dhar, S. Y., Vishnu, P. S. & Rajesh, P. (2009). Tetrahedron Lett.50, 5532–5535.
  • Ren, Y., Wang, W., Zhao, S., Tian, X., Wang, J., Yin, W. & Cheng, L. (2009). Tetrahedron Lett.50, 4595–4597.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhou, K. J., Daniele, A., Shoubhik, D. & Matthias, B. (2009). Org. Lett.11, 2461–2464. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography