PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m781.
Published online 2010 June 16. doi:  10.1107/S1600536810021665
PMCID: PMC3006735

Poly[[bis­(μ-4,4′-bipyridyl-κ2 N:N′)bis­(thio­cyanato-κN)manganese(II)] diethyl ether disolvate]

Abstract

In the title compound, {[Mn(NCS)2(C10H8N2)2]·2C4H10O}n, the MnII ion is coordinated by four N-bonded 4,4′-bipyridine (bipy) ligands and two N-bonded thio­cyanate anions in a distorted octa­hedral coordination geometry. The asymmetric unit consists of one MnII ion and two bipy ligands each located on a twofold rotation axis, as well as one thio­cyanate anion and one diethyl ether mol­ecule in general positions. In the crystal structure, the metal centers with terminally bonded thicyanate anions are bridged by the bipy ligands into layers parallel to (001). The diethyl ether solvent mol­ecules occupy the voids of the structure.

Related literature

For general background to thermal decomposition reactions as an alternative tool for the discovery and preparation of new ligand-deficient coordination polymers with defined magnetic properties, see: Wriedt & Näther (2009a [triangle],b [triangle]); Wriedt et al. (2009a [triangle],b [triangle]). For the isotypic cobalt(II) structure, see: Lu et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m781-scheme1.jpg

Experimental

Crystal data

  • [Mn(NCS)2(C10H8N2)2]·2C4H10O
  • M r = 631.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m781-efi1.jpg
  • a = 11.702 (2) Å
  • b = 11.6391 (18) Å
  • c = 13.424 (2) Å
  • β = 106.75 (2)°
  • V = 1750.8 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.53 mm−1
  • T = 230 K
  • 0.22 × 0.14 × 0.07 mm

Data collection

  • Stoe IPDS-1 diffractometer
  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.912, T max = 0.968
  • 11086 measured reflections
  • 2954 independent reflections
  • 2446 reflections with I > 2σ(I)
  • R int = 0.134

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073
  • wR(F 2) = 0.206
  • S = 1.07
  • 2954 reflections
  • 191 parameters
  • H-atom parameters constrained
  • Δρmax = 0.72 e Å−3
  • Δρmin = −1.37 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021665/hy2314sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021665/hy2314Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MW thanks the Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie and the Studienstiftung des deutschen Volkes for a PhD scholarship. We gratefully acknowledge financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Project 720/3-1). We thank Professor Dr Wolfgang Bensch for the opportunity to use his experimental facilities.

supplementary crystallographic information

Comment

Recently, we are interested in thermal decomposition reactions as an alternative tool for the discovering and preparation of new ligand-deficient coordination polymers with defined magnetic properties (Wriedt & Näther, 2009a,b; Wriedt et al., 2009a,b). In our ongoing investigation on the synthesis, structures and properties of such compounds we have reacted manganese(II) chloride, potassium thiocyanate and 4,4-bipyridine (bipy). In this reaction single crystals of the title compound were grown.

The title compound (Fig. 1) represents a two-dimensional layered coordination polymer, in which the MnII atom is coordinated by four bipy ligands and two thiocyanate anions in an octahedral coordination mode. The crystal structure is isotypic to its cobalt(II) analogue (Lu et al., 1997). In the crystal structure the metal atoms are bridged by the bipy ligands into layers with terminally N-bonded thicyanate anions. The layers are stacked perpendicular to the crystallographic c axis in order that the metal atoms in one layer sit above or below the squares formed by the metal atoms of the adjacent layers. By this arrangement voids are formed in which the diethyl ether molecules are located (Fig. 2). The MnN6 octahedron is markedly distorted with four long Mn—Nbipy distances in the range of 2.277 (4) to 2.312 (4) Å and two short Mn—NCS distances of 2.181 (4) Å (Table 1). The angles arround the metal atoms range between 88.27 (8) to 91.73 (8) and 176.54 (16) to 180°. The pyridyl rings of the bipy ligands form dihedral angles of 51.2 (1) and 52.6 (1)°, respectively. The shortest intra- and interlayer Mn···Mn distances amount to 11.6391 (6) and 8.3198 (11) Å, respectively.

Experimental

MnCl2 (117.0 mg, 0.93 mmol) and KNCS (180.8 mg, 1.86 mmol) obtained from Alfa Aesar were dissolved in a mixture of 10 ml water and 15 ml ethanol. This mixture was layered with a solution of 4,4-bipyridine (306.3 mg, 2 mmol) in 10 ml diethyl ether. After one day colourless block-shaped single crystals of the title compound were grown at the phase interface.

Refinement

The H atoms were located in a difference Fourier map but were positioned with idealized geometry and refined using a riding model, with C—H = 0.94 (aromatic), 0.98 (methylene) and 0.97 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Figures

Fig. 1.
Structure of the title compound with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) -x+1, y, -z+3/2; (ii) x, y-1, z; (iii) -x, y, -z+3/2.]
Fig. 2.
A single layer in the title compound with view approximately along the crystallographic c axis.

Crystal data

[Mn(NCS)2(C10H8N2)2]·2C4H10OF(000) = 662
Mr = 631.71Dx = 1.198 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 11086 reflections
a = 11.702 (2) Åθ = 2.4–25.0°
b = 11.6391 (18) ŵ = 0.53 mm1
c = 13.424 (2) ÅT = 230 K
β = 106.75 (2)°Block, colourless
V = 1750.8 (5) Å30.22 × 0.14 × 0.07 mm
Z = 2

Data collection

Stoe IPDS-1 diffractometer2954 independent reflections
Radiation source: fine-focus sealed tube2446 reflections with I > 2σ(I)
graphiteRint = 0.134
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2002)h = −13→13
Tmin = 0.912, Tmax = 0.968k = −13→13
11086 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.206w = 1/[σ2(Fo2) + (0.1115P)2 + 1.3719P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2954 reflectionsΔρmax = 0.72 e Å3
191 parametersΔρmin = −1.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.50000.71119 (6)0.75000.0284 (3)
N10.3018 (2)0.7070 (3)0.7479 (3)0.0385 (8)
C10.2710 (3)0.6632 (5)0.8264 (4)0.0557 (13)
H10.33170.63400.88290.067*
C20.1544 (4)0.6575 (5)0.8310 (4)0.0617 (15)
H20.13730.62490.88920.074*
C30.0633 (3)0.7003 (4)0.7491 (4)0.0408 (10)
C40.0940 (3)0.7447 (5)0.6646 (4)0.0577 (13)
H40.03520.77250.60610.069*
C50.2141 (3)0.7470 (5)0.6684 (4)0.0559 (13)
H50.23460.77880.61150.067*
N110.50000.9088 (4)0.75000.0367 (11)
N120.50001.5156 (3)0.75000.0354 (11)
C110.4781 (4)0.9689 (3)0.8272 (4)0.0448 (10)
H110.46240.92850.88240.054*
C120.4775 (4)1.0865 (4)0.8300 (4)0.0498 (11)
H120.46191.12490.88620.060*
C130.50001.1484 (4)0.75000.0384 (13)
C160.4344 (4)1.4556 (4)0.6684 (4)0.0488 (11)
H160.38801.49630.61040.059*
C150.4314 (4)1.3368 (4)0.6652 (4)0.0509 (11)
H170.38371.29820.60630.061*
C140.50001.2758 (4)0.75000.0390 (13)
N210.5534 (3)0.7169 (3)0.9196 (3)0.0386 (8)
C210.6253 (3)0.6927 (3)0.9963 (4)0.0412 (10)
S210.72754 (14)0.65840 (19)1.10210 (13)0.0900 (6)
C310.0822 (10)0.3656 (13)0.6206 (10)0.170 (6)
H31A0.14790.40180.60200.255*
H31B0.07560.39810.68530.255*
H31C0.00860.37870.56590.255*
C320.1059 (12)0.2324 (15)0.6347 (9)0.172 (6)
H32A0.16790.21770.70020.206*
H32B0.03290.19300.63750.206*
O310.1431 (5)0.1896 (8)0.5502 (5)0.138 (3)
C330.1686 (9)0.0670 (10)0.5534 (11)0.146 (5)
H33A0.09740.02380.55540.175*
H33B0.23280.04890.61660.175*
C340.2049 (11)0.0329 (12)0.4606 (12)0.167 (5)
H34A0.13680.03830.39910.251*
H34B0.2341−0.04560.46880.251*
H34C0.26760.08370.45300.251*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0147 (4)0.0265 (5)0.0448 (6)0.0000.0100 (3)0.000
N10.0135 (13)0.0482 (19)0.057 (2)0.0019 (12)0.0146 (14)0.0072 (15)
C10.0196 (17)0.087 (3)0.060 (3)0.0062 (19)0.0109 (18)0.025 (3)
C20.0233 (18)0.101 (4)0.064 (3)0.005 (2)0.0176 (19)0.032 (3)
C30.0130 (17)0.060 (2)0.051 (3)0.0018 (15)0.0119 (15)0.0015 (19)
C40.0209 (17)0.103 (4)0.050 (3)0.012 (2)0.0110 (17)0.011 (3)
C50.0220 (18)0.095 (4)0.054 (3)0.011 (2)0.0174 (18)0.019 (3)
N110.034 (2)0.026 (2)0.054 (3)0.0000.018 (2)0.000
N120.0246 (19)0.025 (2)0.055 (3)0.0000.0101 (19)0.000
C110.057 (2)0.032 (2)0.055 (3)0.0032 (18)0.030 (2)0.0031 (18)
C120.065 (3)0.036 (2)0.058 (3)0.004 (2)0.032 (2)−0.0027 (19)
C130.034 (2)0.028 (3)0.054 (4)0.0000.013 (2)0.000
C160.050 (2)0.032 (2)0.055 (3)−0.0014 (18)0.0004 (19)0.0048 (18)
C150.056 (2)0.034 (2)0.054 (3)−0.0069 (19)0.002 (2)−0.0031 (19)
C140.036 (3)0.028 (3)0.056 (4)0.0000.018 (3)0.000
N210.0276 (15)0.0389 (18)0.049 (2)0.0025 (12)0.0111 (15)0.0026 (14)
C210.034 (2)0.044 (2)0.049 (3)0.0014 (16)0.0167 (19)−0.0025 (18)
S210.0624 (9)0.1362 (16)0.0578 (12)0.0265 (9)−0.0047 (7)0.0143 (9)
C310.111 (8)0.246 (16)0.144 (11)0.028 (9)0.022 (7)−0.056 (11)
C320.136 (9)0.308 (19)0.079 (8)−0.067 (11)0.041 (7)−0.028 (10)
O310.078 (3)0.235 (9)0.093 (5)−0.005 (4)0.010 (3)0.028 (5)
C330.089 (6)0.131 (8)0.204 (14)0.015 (6)0.020 (7)0.061 (8)
C340.134 (9)0.179 (11)0.198 (13)0.057 (8)0.062 (9)0.020 (10)

Geometric parameters (Å, °)

Mn1—N212.181 (4)C13—C12iii1.380 (5)
Mn1—N12i2.277 (4)C13—C141.483 (7)
Mn1—N112.300 (4)C16—C151.383 (6)
Mn1—N12.312 (3)C16—H160.9400
N1—C11.311 (6)C15—C141.385 (5)
N1—C51.333 (6)C15—H170.9400
C1—C21.385 (5)C14—C15iii1.385 (5)
C1—H10.9400N21—C211.161 (6)
C2—C31.386 (6)C21—S211.621 (5)
C2—H20.9400C31—C321.577 (18)
C3—C41.384 (7)C31—H31A0.9700
C3—C3ii1.488 (6)C31—H31B0.9700
C4—C51.392 (5)C31—H31C0.9700
C4—H40.9400C32—O311.418 (13)
C5—H50.9400C32—H32A0.9800
N11—C111.334 (5)C32—H32B0.9800
N11—C11iii1.334 (5)O31—C331.455 (12)
N12—C161.338 (5)C33—C341.482 (16)
N12—C16iii1.338 (5)C33—H33A0.9800
N12—Mn1iv2.277 (4)C33—H33B0.9800
C11—C121.370 (6)C34—H34A0.9700
C11—H110.9400C34—H34B0.9700
C12—C131.380 (5)C34—H34C0.9700
C12—H120.9400
N21—Mn1—N21iii176.54 (16)C11—C12—C13119.8 (4)
N21—Mn1—N12i91.73 (8)C11—C12—H12120.1
N21iii—Mn1—N12i91.73 (8)C13—C12—H12120.1
N21—Mn1—N1188.27 (8)C12—C13—C12iii117.0 (5)
N21iii—Mn1—N1188.27 (8)C12—C13—C14121.5 (3)
N12i—Mn1—N11180.0C12iii—C13—C14121.5 (3)
N21—Mn1—N189.88 (12)N12—C16—C15123.4 (4)
N21iii—Mn1—N190.19 (12)N12—C16—H16118.3
N12i—Mn1—N188.79 (8)C15—C16—H16118.3
N11—Mn1—N191.21 (8)C16—C15—C14118.9 (4)
N21—Mn1—N1iii90.19 (12)C16—C15—H17120.6
N21iii—Mn1—N1iii89.88 (12)C14—C15—H17120.6
N12i—Mn1—N1iii88.79 (8)C15iii—C14—C15118.3 (5)
N11—Mn1—N1iii91.21 (8)C15iii—C14—C13120.8 (3)
N1—Mn1—N1iii177.58 (16)C15—C14—C13120.8 (3)
C1—N1—C5116.9 (3)C21—N21—Mn1146.6 (3)
C1—N1—Mn1120.3 (3)N21—C21—S21178.9 (4)
C5—N1—Mn1122.7 (3)C32—C31—H31A109.5
N1—C1—C2123.8 (4)C32—C31—H31B109.5
N1—C1—H1118.1H31A—C31—H31B109.5
C2—C1—H1118.1C32—C31—H31C109.5
C1—C2—C3119.4 (4)H31A—C31—H31C109.5
C1—C2—H2120.3H31B—C31—H31C109.5
C3—C2—H2120.3O31—C32—C31109.5 (10)
C4—C3—C2117.5 (3)O31—C32—H32A109.8
C4—C3—C3ii120.5 (4)C31—C32—H32A109.8
C2—C3—C3ii122.0 (5)O31—C32—H32B109.8
C3—C4—C5118.4 (4)C31—C32—H32B109.8
C3—C4—H4120.8H32A—C32—H32B108.2
C5—C4—H4120.8C32—O31—C33115.3 (10)
N1—C5—C4124.0 (4)O31—C33—C34110.1 (10)
N1—C5—H5118.0O31—C33—H33A109.6
C4—C5—H5118.0C34—C33—H33A109.6
C11—N11—C11iii116.8 (5)O31—C33—H33B109.6
C11—N11—Mn1121.6 (2)C34—C33—H33B109.6
C11iii—N11—Mn1121.6 (2)H33A—C33—H33B108.2
C16—N12—C16iii117.1 (5)C33—C34—H34A109.5
C16—N12—Mn1iv121.4 (2)C33—C34—H34B109.5
C16iii—N12—Mn1iv121.4 (2)H34A—C34—H34B109.5
N11—C11—C12123.3 (4)C33—C34—H34C109.5
N11—C11—H11118.4H34A—C34—H34C109.5
C12—C11—H11118.4H34B—C34—H34C109.5

Symmetry codes: (i) x, y−1, z; (ii) −x, y, −z+3/2; (iii) −x+1, y, −z+3/2; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2314).

References

  • Lu, J., Paliwala, T., Lim, S. C., Yu, C., Niu, T. & Jacobson, A. J. (1997). Inorg. Chem.36, 923–929.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE Stoe & Cie, Darmstadt, Germany.
  • Wriedt, M. & Näther, C. (2009a). Dalton Trans. pp. 10192–10198. [PubMed]
  • Wriedt, M. & Näther, C. (2009b). Z. Anorg. Allg. Chem.636, 569–575.
  • Wriedt, M., Sellmer, S. & Näther, C. (2009a). Dalton Trans. pp. 7975–7984. [PubMed]
  • Wriedt, M., Sellmer, S. & Näther, C. (2009b). Inorg. Chem.48, 6896–6903. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography