PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1602–o1603.
Published online 2010 June 9. doi:  10.1107/S1600536810021173
PMCID: PMC3006732

4-{[(E)-(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl)methyl­idene]amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

Abstract

The title Schiff base compound, C23H23N5O, was synthesized by the reaction of 4-amino­phenazone and 3,5-dimethyl-1-phenyl­pyrazole-4-carbaxaldehyde. The mol­ecule adopts an E configuration about the central C=N double bond. A weak intra­molecular C—H(...)O hydrogen bond generates an S(6) ring motif. The dihedral angle between the pyrazole rings is 24.72 (10)° and the dihedral angles between the pyrazole rings and the adjacent phenyl rings are 58.67 (10) and 46.58 (11)°. The crystal structure is stabilized by weak C—H(...)π inter­actions involving the pyrazolone and phenyl rings.

Related literature

For background to and applications of heterocylic Schiff bases, see: Nawaz et al. (2009 [triangle]); Li et al. (1999 [triangle]); Urena et al. (2003 [triangle]); Geronikaki et al. (2003 [triangle]); Shanker et al. (2009 [triangle]); Pandeya et al. (1999 [triangle]); Sridhar et al. (2002 [triangle]); Nawrocka et al. (2004 [triangle]). For related structures, see: Eryigit & Kendi (1998 [triangle]); Manikandan et al. (2000 [triangle]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1602-scheme1.jpg

Experimental

Crystal data

  • C23H23N5O
  • M r = 385.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1602-efi1.jpg
  • a = 15.2985 (2) Å
  • b = 7.6827 (1) Å
  • c = 19.6737 (3) Å
  • β = 116.905 (1)°
  • V = 2062.03 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 K
  • 0.45 × 0.21 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.965, T max = 0.992
  • 23014 measured reflections
  • 5993 independent reflections
  • 2881 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.161
  • S = 1.03
  • 5993 reflections
  • 311 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021173/lh5060sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021173/lh5060Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks USM for a post-doctoral research fellowship. AMA and SAK thank the Chemistry Department, King Abdul Aziz University, Jeddah, for providing research facilities.

supplementary crystallographic information

Comment

Heterocyclic Schiff bases have attracted continuing interest over the years because of their varied biological activities (Nawaz et al., 2009). Recently they have found application in drug development for the treatment of allergies (Li et al., 1999), hypertension (Urena et al., 2003), inflammation (Geronikaki et al., 20003), bacterial (Shanker et al., 2009), HIV infections (Pandeya et al., 1999) and hypnotics (Sridhar et al., 2002). More recently they have also been used for the treatment of pain acting as fibrinogen receptor antagonists with antithrombotic activity (Nawrocka et al., 2004). Due to wide application of pyrazoline-containing Schiff bases, we have synthesized a novel pyrazoline-containing Schiff base from 4-aminophenazone.

In the title compound (Fig. 1), the rings A (C14–C19), B (N4/N5/C11–C13), C (N1/N2/C7–C9) and D (C1–C6) are essentially planar. The dihedral angle between the best planes of the rings are A/B = 58.67 (10)°, A/C = 83.07 (10)°, A/D = 79.53 (12)°, B/C = 24.72 (10)°, B/D = 44.68 (11)° and C/D = 46.58 (11)°. The molecule adopts a trans configuration about the central C10═N3 double bond. The C–N bond lengths of N1–C6 = 1.423 (2) Å; N2–C8 = 1.375 (2) Å; N3–C9 = 1.400 (2) Å; N5–C13 = 1.357 (2) Å; N1–C7 = 1.404 (2) Å; N2–C20 = 1.467 (2) Å; N4–C12 = 1.325 (2) Å and N5–C14 = 1.429 (2) are normal for C–N single-bond distances. The distance between C10–N3 (1.287 (2) Å) is typical for a C═N double-bond distance. These bonds are comparable with those in N-(1H-benzoimidazol-2-ylmethyl)-N-(2,6-dichlorophenyl) amine (Eryigit & Kendi, 1998). The N1–N2 and N4–N5 (1.4082 (19) Å & 1.3702 (19) Å) single-bond lengths are comparable with those in 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl) pyridine (Manikandan et al., 2000). An weak intramolecular C10—H10A···O1 hydrogen bond interaction generates an S(6) ring motif (Bernstein et al., 1995).

In the crystal structure (Fig. 2) there are no classical hydrogen bonds but stabilization is provided by weak C20—H20C···Cg1i, C19—H19A···Cg2ii and C22—H22B···Cg2iii interactions (see Table 1 for symmetry codes). Cg1 and Cg2 are the centroids of rings (N4/N5/C11–C13) and (C1–C6) rings respectively.

Experimental

A mixture of 4-aminophenazone (0.50g, 0.0025 mol) and 3,5-dimethyl-1- phenylpyrazole-4-carbaxaldehyde (0.50 g, 0.0025 mol) in methanol (15 mL) was heated for 3 h to give a yellow precipitate. It was then filtered and washed with methanol to gives the pure schiff bases ( I). Colourless crystals of (I) are recrystallized from methanol. Yield: 68%; m. p. 206°C. IR (KBr) νmax cm-1: 2980 (C–H aromatic), 1642 (HC═N), 1607 (C═O), 1134 (C–N). 1H-NMR (600 MHz, CDCl3) d: 9.75 (CH═N, s), 7.49–7.29 (CH aromatic, m), 3.1(N–CH3, s), 2.84 (N-CH3, s), 2.15 (CH3, s), 1.70 (CH3, s).

Refinement

Atoms H1A, H2A, H3A, H4A, H5A, H10A, H15A, H16A, H17A, H18A and H19A were located from a difference Fourier maps and refined freely. The methyl H atoms were positioned geometrically [C–H = 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.5Ueq(C). A rotating group model was used for the methyl group.

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. An intramolecular hydrogen bond is shown as dashed line.
Fig. 2.
The crystal packing of the title compound showing showing the molecules stacked along b- axis.

Crystal data

C23H23N5OF(000) = 816
Mr = 385.46Dx = 1.242 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3425 reflections
a = 15.2985 (2) Åθ = 2.8–22.2°
b = 7.6827 (1) ŵ = 0.08 mm1
c = 19.6737 (3) ÅT = 296 K
β = 116.905 (1)°Block, colourless
V = 2062.03 (5) Å30.45 × 0.21 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5993 independent reflections
Radiation source: fine-focus sealed tube2881 reflections with I > 2σ(I)
graphiteRint = 0.048
[var phi] and ω scansθmax = 30.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −20→21
Tmin = 0.965, Tmax = 0.992k = −10→10
23014 measured reflectionsl = −27→27

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.161w = 1/[σ2(Fo2) + (0.0683P)2 + 0.0093P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5993 reflectionsΔρmax = 0.24 e Å3
311 parametersΔρmin = −0.18 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0055 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.11416 (10)0.47531 (17)0.60512 (9)0.0735 (5)
N10.04112 (10)0.21383 (18)0.60925 (9)0.0508 (4)
N20.07320 (10)0.04036 (17)0.62683 (9)0.0474 (4)
N30.28754 (10)0.22512 (19)0.62644 (8)0.0470 (4)
N40.57171 (10)0.41293 (19)0.66310 (9)0.0509 (4)
N50.53154 (10)0.55923 (17)0.62050 (8)0.0426 (4)
C1−0.09125 (16)0.4099 (3)0.58937 (15)0.0687 (6)
C2−0.16074 (18)0.4715 (4)0.6111 (2)0.0865 (9)
C3−0.17010 (19)0.3990 (4)0.6710 (2)0.0855 (8)
C4−0.10854 (18)0.2665 (3)0.71182 (17)0.0727 (7)
C5−0.03755 (15)0.2068 (3)0.69323 (13)0.0568 (5)
C6−0.03009 (13)0.2767 (2)0.63100 (12)0.0513 (5)
C70.11729 (13)0.3159 (2)0.60932 (10)0.0491 (5)
C80.16367 (13)0.0318 (2)0.62798 (10)0.0449 (4)
C90.19323 (12)0.1939 (2)0.61851 (9)0.0428 (4)
C100.30947 (14)0.3749 (2)0.60912 (10)0.0463 (4)
C110.40715 (12)0.4167 (2)0.62077 (9)0.0410 (4)
C120.49667 (13)0.3256 (2)0.66248 (10)0.0478 (5)
C130.43302 (12)0.5662 (2)0.59479 (9)0.0409 (4)
C140.59465 (12)0.6879 (2)0.61384 (10)0.0418 (4)
C150.66808 (15)0.7576 (3)0.67935 (12)0.0586 (5)
C160.72986 (18)0.8801 (3)0.67306 (15)0.0739 (7)
C170.71962 (16)0.9330 (3)0.60346 (14)0.0670 (6)
C180.64705 (16)0.8606 (3)0.53863 (14)0.0605 (6)
C190.58412 (15)0.7374 (2)0.54338 (11)0.0508 (5)
C20−0.00160 (14)−0.0950 (2)0.59196 (12)0.0614 (5)
H20A−0.0387−0.07230.53840.092*
H20B−0.0446−0.09480.61540.092*
H20C0.0296−0.20660.59920.092*
C210.21737 (16)−0.1350 (2)0.64000 (15)0.0748 (7)
H21A0.2829−0.11250.64770.112*
H21B0.1844−0.20790.59600.112*
H21C0.2196−0.19270.68400.112*
C220.51419 (15)0.1564 (3)0.70426 (13)0.0727 (6)
H22A0.58330.13320.73020.109*
H22B0.48170.06450.66870.109*
H22C0.48890.16290.74080.109*
C230.37292 (14)0.7138 (3)0.54809 (13)0.0644 (6)
H23A0.40320.82180.57150.097*
H23B0.30840.70750.54480.097*
H23C0.36840.70730.49790.097*
H1A−0.0843 (13)0.456 (2)0.5486 (11)0.055 (6)*
H2A−0.1957 (19)0.562 (4)0.5826 (15)0.106 (9)*
H3A−0.2190 (17)0.434 (3)0.6873 (13)0.088 (7)*
H4A−0.1115 (17)0.210 (3)0.7549 (14)0.091 (8)*
H5A0.0095 (14)0.115 (2)0.7224 (11)0.062 (6)*
H10A0.2610 (12)0.469 (2)0.5891 (10)0.052 (5)*
H15A0.6715 (13)0.724 (2)0.7285 (11)0.064 (6)*
H16A0.7790 (17)0.924 (3)0.7169 (14)0.092 (8)*
H17A0.7596 (15)1.023 (3)0.5978 (12)0.082 (7)*
H18A0.6394 (13)0.892 (2)0.4898 (12)0.067 (6)*
H19A0.5326 (13)0.682 (2)0.4972 (11)0.060 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0634 (9)0.0410 (8)0.1185 (13)0.0000 (7)0.0432 (9)0.0135 (8)
N10.0454 (9)0.0419 (8)0.0686 (11)−0.0020 (7)0.0289 (8)0.0045 (7)
N20.0494 (9)0.0372 (8)0.0616 (10)−0.0071 (7)0.0304 (8)−0.0037 (7)
N30.0456 (9)0.0494 (9)0.0511 (9)−0.0080 (7)0.0263 (7)−0.0023 (7)
N40.0458 (9)0.0490 (9)0.0560 (10)−0.0008 (7)0.0212 (7)0.0111 (7)
N50.0415 (9)0.0408 (8)0.0467 (9)−0.0013 (6)0.0211 (7)0.0051 (7)
C10.0535 (14)0.0628 (14)0.0775 (17)0.0058 (11)0.0188 (12)0.0043 (12)
C20.0536 (15)0.0703 (17)0.113 (2)0.0143 (13)0.0180 (16)−0.0166 (16)
C30.0572 (16)0.093 (2)0.109 (2)−0.0042 (15)0.0399 (16)−0.0380 (18)
C40.0617 (15)0.0759 (16)0.0876 (18)−0.0125 (13)0.0400 (14)−0.0276 (14)
C50.0496 (12)0.0563 (12)0.0661 (14)−0.0056 (10)0.0274 (11)−0.0097 (11)
C60.0360 (10)0.0458 (10)0.0670 (13)−0.0029 (8)0.0189 (9)−0.0075 (9)
C70.0427 (10)0.0460 (10)0.0557 (12)−0.0055 (9)0.0198 (9)0.0049 (9)
C80.0464 (10)0.0434 (10)0.0523 (11)−0.0062 (8)0.0287 (9)−0.0038 (8)
C90.0420 (10)0.0455 (9)0.0436 (10)−0.0062 (8)0.0216 (8)−0.0023 (8)
C100.0465 (11)0.0479 (10)0.0465 (11)−0.0042 (9)0.0229 (9)0.0013 (9)
C110.0428 (10)0.0435 (9)0.0420 (10)−0.0061 (8)0.0237 (8)−0.0024 (8)
C120.0503 (11)0.0479 (10)0.0478 (11)−0.0041 (9)0.0243 (9)0.0044 (8)
C130.0417 (10)0.0425 (9)0.0419 (10)−0.0022 (7)0.0218 (8)−0.0005 (8)
C140.0415 (10)0.0381 (9)0.0508 (11)−0.0025 (8)0.0254 (9)−0.0003 (8)
C150.0572 (12)0.0649 (13)0.0492 (13)−0.0139 (10)0.0200 (10)0.0020 (10)
C160.0663 (15)0.0719 (15)0.0697 (17)−0.0271 (12)0.0187 (13)−0.0036 (13)
C170.0657 (14)0.0549 (12)0.0818 (17)−0.0181 (11)0.0345 (13)0.0019 (12)
C180.0769 (15)0.0496 (11)0.0662 (15)−0.0079 (10)0.0423 (13)0.0047 (11)
C190.0615 (13)0.0459 (10)0.0501 (12)−0.0115 (9)0.0298 (10)−0.0034 (9)
C200.0618 (13)0.0536 (11)0.0711 (14)−0.0219 (10)0.0322 (11)−0.0095 (10)
C210.0783 (15)0.0461 (12)0.125 (2)−0.0014 (11)0.0680 (15)−0.0048 (12)
C220.0644 (14)0.0625 (13)0.0870 (17)0.0023 (11)0.0306 (12)0.0302 (12)
C230.0523 (12)0.0575 (12)0.0835 (15)0.0062 (10)0.0309 (11)0.0151 (11)

Geometric parameters (Å, °)

O1—C71.227 (2)C11—C131.386 (2)
N1—C71.404 (2)C11—C121.422 (2)
N1—N21.4082 (19)C12—C221.496 (2)
N1—C61.423 (2)C13—C231.487 (2)
N2—C81.375 (2)C14—C191.375 (2)
N2—C201.467 (2)C14—C151.378 (3)
N3—C101.287 (2)C15—C161.379 (3)
N3—C91.400 (2)C15—H15A0.978 (19)
N4—C121.325 (2)C16—C171.368 (3)
N4—N51.3702 (19)C16—H16A0.92 (2)
N5—C131.357 (2)C17—C181.374 (3)
N5—C141.429 (2)C17—H17A0.96 (2)
C1—C61.378 (3)C18—C191.383 (3)
C1—C21.396 (4)C18—H18A0.95 (2)
C1—H1A0.927 (18)C19—H19A0.990 (19)
C2—C31.368 (4)C20—H20A0.9600
C2—H2A0.90 (3)C20—H20B0.9600
C3—C41.372 (4)C20—H20C0.9600
C3—H3A0.98 (2)C21—H21A0.9600
C4—C51.372 (3)C21—H21B0.9600
C4—H4A0.97 (2)C21—H21C0.9600
C5—C61.388 (3)C22—H22A0.9600
C5—H5A0.984 (19)C22—H22B0.9600
C7—C91.439 (2)C22—H22C0.9600
C8—C91.366 (2)C23—H23A0.9600
C8—C211.483 (2)C23—H23B0.9600
C10—C111.442 (2)C23—H23C0.9600
C10—H10A0.982 (17)
C7—N1—N2109.36 (13)C11—C12—C22129.15 (16)
C7—N1—C6123.92 (15)N5—C13—C11106.51 (14)
N2—N1—C6118.45 (14)N5—C13—C23122.19 (15)
C8—N2—N1106.59 (13)C11—C13—C23131.30 (16)
C8—N2—C20122.69 (15)C19—C14—C15120.63 (17)
N1—N2—C20116.40 (14)C19—C14—N5120.55 (16)
C10—N3—C9120.18 (15)C15—C14—N5118.79 (16)
C12—N4—N5105.24 (14)C14—C15—C16118.9 (2)
C13—N5—N4112.08 (13)C14—C15—H15A118.6 (11)
C13—N5—C14128.42 (14)C16—C15—H15A122.4 (11)
N4—N5—C14119.27 (13)C17—C16—C15121.4 (2)
C6—C1—C2118.4 (3)C17—C16—H16A120.3 (15)
C6—C1—H1A119.1 (12)C15—C16—H16A118.3 (15)
C2—C1—H1A122.5 (12)C16—C17—C18119.2 (2)
C3—C2—C1121.1 (3)C16—C17—H17A122.6 (13)
C3—C2—H2A125.9 (17)C18—C17—H17A118.2 (13)
C1—C2—H2A113.0 (18)C17—C18—C19120.6 (2)
C2—C3—C4119.6 (3)C17—C18—H18A121.0 (12)
C2—C3—H3A124.3 (14)C19—C18—H18A118.4 (12)
C4—C3—H3A116.1 (14)C14—C19—C18119.34 (19)
C5—C4—C3120.6 (3)C14—C19—H19A119.2 (10)
C5—C4—H4A115.9 (14)C18—C19—H19A121.5 (10)
C3—C4—H4A123.5 (14)N2—C20—H20A109.5
C4—C5—C6119.8 (2)N2—C20—H20B109.5
C4—C5—H5A122.7 (11)H20A—C20—H20B109.5
C6—C5—H5A117.5 (11)N2—C20—H20C109.5
C1—C6—C5120.4 (2)H20A—C20—H20C109.5
C1—C6—N1118.7 (2)H20B—C20—H20C109.5
C5—C6—N1120.90 (17)C8—C21—H21A109.5
O1—C7—N1123.40 (17)C8—C21—H21B109.5
O1—C7—C9131.56 (17)H21A—C21—H21B109.5
N1—C7—C9104.99 (14)C8—C21—H21C109.5
C9—C8—N2110.30 (15)H21A—C21—H21C109.5
C9—C8—C21128.03 (16)H21B—C21—H21C109.5
N2—C8—C21121.65 (15)C12—C22—H22A109.5
C8—C9—N3121.95 (15)C12—C22—H22B109.5
C8—C9—C7108.22 (15)H22A—C22—H22B109.5
N3—C9—C7129.41 (15)C12—C22—H22C109.5
N3—C10—C11122.19 (18)H22A—C22—H22C109.5
N3—C10—H10A121.7 (10)H22B—C22—H22C109.5
C11—C10—H10A116.1 (10)C13—C23—H23A109.5
C13—C11—C12105.06 (14)C13—C23—H23B109.5
C13—C11—C10125.06 (16)H23A—C23—H23B109.5
C12—C11—C10129.81 (16)C13—C23—H23C109.5
N4—C12—C11111.10 (15)H23A—C23—H23C109.5
N4—C12—C22119.73 (16)H23B—C23—H23C109.5
C7—N1—N2—C8−7.52 (18)N1—C7—C9—C8−3.59 (19)
C6—N1—N2—C8−157.20 (15)O1—C7—C9—N31.0 (3)
C7—N1—N2—C20−148.51 (16)N1—C7—C9—N3−176.21 (16)
C6—N1—N2—C2061.8 (2)C9—N3—C10—C11176.07 (15)
C12—N4—N5—C131.35 (18)N3—C10—C11—C13171.42 (16)
C12—N4—N5—C14176.16 (14)N3—C10—C11—C12−12.0 (3)
C6—C1—C2—C3−1.7 (4)N5—N4—C12—C11−1.32 (19)
C1—C2—C3—C41.7 (4)N5—N4—C12—C22−179.90 (16)
C2—C3—C4—C50.3 (4)C13—C11—C12—N40.84 (19)
C3—C4—C5—C6−2.3 (3)C10—C11—C12—N4−176.23 (17)
C2—C1—C6—C5−0.3 (3)C13—C11—C12—C22179.26 (19)
C2—C1—C6—N1−179.76 (19)C10—C11—C12—C222.2 (3)
C4—C5—C6—C12.3 (3)N4—N5—C13—C11−0.84 (18)
C4—C5—C6—N1−178.27 (17)C14—N5—C13—C11−175.06 (15)
C7—N1—C6—C162.0 (2)N4—N5—C13—C23179.18 (16)
N2—N1—C6—C1−153.01 (17)C14—N5—C13—C235.0 (3)
C7—N1—C6—C5−117.4 (2)C12—C11—C13—N50.01 (17)
N2—N1—C6—C527.5 (2)C10—C11—C13—N5177.27 (15)
N2—N1—C7—O1−170.72 (18)C12—C11—C13—C23179.99 (19)
C6—N1—C7—O1−23.1 (3)C10—C11—C13—C23−2.8 (3)
N2—N1—C7—C96.80 (18)C13—N5—C14—C19−63.0 (2)
C6—N1—C7—C9154.47 (17)N4—N5—C14—C19123.15 (18)
N1—N2—C8—C95.20 (19)C13—N5—C14—C15118.9 (2)
C20—N2—C8—C9143.14 (17)N4—N5—C14—C15−55.0 (2)
N1—N2—C8—C21−176.14 (18)C19—C14—C15—C161.1 (3)
C20—N2—C8—C21−38.2 (3)N5—C14—C15—C16179.18 (18)
N2—C8—C9—N3172.28 (14)C14—C15—C16—C17−0.1 (3)
C21—C8—C9—N3−6.3 (3)C15—C16—C17—C18−0.9 (4)
N2—C8—C9—C7−1.0 (2)C16—C17—C18—C190.9 (3)
C21—C8—C9—C7−179.6 (2)C15—C14—C19—C18−1.1 (3)
C10—N3—C9—C8172.48 (17)N5—C14—C19—C18−179.16 (16)
C10—N3—C9—C7−15.8 (3)C17—C18—C19—C140.1 (3)
O1—C7—C9—C8173.6 (2)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N4/N5/C11–C13 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10A···O10.986 (18)2.40 (2)3.052 (3)123.3 (14)
C19—H19A···Cg2i0.990 (19)2.656 (19)3.452 (2)137.4 (17)
C20—H20C···Cg1ii0.962.85 (3)3.720 (3)149 (1)
C22—H22B···Cg2iii0.962.82 (3)3.585 (3)135 (1)

Symmetry codes: (i) −x+1, −y−1, −z−1; (ii) −x, −y−2, −z−1; (iii) −x+1, y−1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5060).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Eryigit, R. & Kendi, E. (1998). J. Chem. Crystallogr.28, 145–147.
  • Geronikaki, J. M. A., Litina, D. H. & Amourgianou, M. (2003). Farmaco, 58, 489–495. [PubMed]
  • Li, X., Schofield, B. H., Huang, C., Kleiner, G. I., Hugh, A. & Sampson, H. A. (1999). J. Allergy Clin. Immunol.103, 206–214. [PubMed]
  • Manikandan, P., Justin Thomas, K. R. & Manoharan, P. T. (2000). Acta Cryst. C56, 308–309. [PubMed]
  • Nawaz, H., Akhter, Z., Yameen, S., Siddiqi, H. M., Mirza, B. & Rifat, A. (2009). J. Organomet. Chem.694, 2198–2203.
  • Nawrocka, W., Sztuba, B., Kowalska, M. W., Liszkiewicz, H., Wietrzyk, J., Nasulewicz, A., Peczyska, M. & Opolski, A. (2004). Il Farmaco, 59, 83–91. [PubMed]
  • Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. D. (1999). Pharm. Acta Helv.74, 11–17. [PubMed]
  • Shanker, K., Rohini, R., Ravinder, V., Reddy, P. M. & Ho, Y. (2009). Spectrochim. Acta Part A, 73, 205–211. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci.16, 129–132. [PubMed]
  • Urena, F. H., Illn-Cabeza, N. A., Moreno-Carretero, M. N. & José, M. (2003). J. Inorg. Biochem.94, 326–334. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography