PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1673.
Published online 2010 June 16. doi:  10.1107/S160053681002204X
PMCID: PMC3006729

3,6,14,17-Tetramethoxy-22,23-diphenyl-1,10,12,21-tetraazahexacyclo[19.2.1.02,7.010,23.012,22.013,18]tetracosa-2(7),3,5,13(18),14,16-hexaene-11,24-di­thione

Abstract

The title compound, C36H34N4O4S2, is a thio­glycoluril derivative, which bears two phenyl substituents on its convex face and two meth­oxy substituted o-xylylenes as sidewalls of the molecular clip. There is one half-mol­ecule in the asymmetric unit: a crystallographic twofold axis generates the complete molecule. The non-planar seven-membered rings adopt chair conformations, while the two five-membered rings exhibit envelope conformations and make a dihedral angle of 68.46 (12)°. The O atoms of the meth­oxy groups are coplanar with the six-membered o-xylylene sidewalls.

Related literature

For related structures, see: Broan et al. (1989 [triangle]); Cao et al. (2009 [triangle]); Wang et al. (2006 [triangle]); Wang & Xi (2009 [triangle]); Wu & Sun, (2009 [triangle]). For further synthetic details, see: Broan et al. (1989 [triangle]); Wu et al. (2002 [triangle]). The rigid concave shape of glycoluril makes it a versatile building block in supramolecular chemistry, see: Gao et al. (2009 [triangle]); Rowan et al. (1999 [triangle]); Hof et al. (2002 [triangle]); Kolbel & Menger (2001 [triangle]); Wu et al. (2002 [triangle]); Kang et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1673-scheme1.jpg

Experimental

Crystal data

  • C36H34N4O4S2
  • M r = 650.79
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1673-efi1.jpg
  • a = 17.9993 (15) Å
  • b = 12.5069 (11) Å
  • c = 16.0934 (12) Å
  • β = 115.961 (3)°
  • V = 3257.3 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 298 K
  • 0.23 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • 13570 measured reflections
  • 3546 independent reflections
  • 2279 reflections with I > 2σ(I)
  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.162
  • S = 0.98
  • 3546 reflections
  • 210 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002204X/fl2304sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002204X/fl2304Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks Professor An-Xin Wu for technical assistance and Dr Meng Xiang-Gao for the data collection.

supplementary crystallographic information

Comment

The rigid concave shape of glycoluril makes it a versatile building block to construct various supramolecular objects (Gao et al., 2009), including molecular clips and molecular baskets (Rowan et al., 1999), molecular capsules (Hof et al., 2002), xerogels (Kolbel & Menger, 2001), the cucurbit[n]uril family (Wu et al., 2002), and anion-binding receptors (Kang et al., 2004). Based on the previous studies (Broan et al., 1989; Cao et al., 2009; Wang et al., 2006; Wang & Xi, 2009; Wu & Sun, 2009), we report here the structure of the title thioglycoluril derivative (Fig. 1), which is a potential receptor in supramolecular chemistry.

There is one half-molecule in the asymmetric unit. The non-planar seven-membered rings adopt chair conformations, while the two five-membered rings have envelope conformation and the dihedral angle between them is 68.46°. The methoxy groups on sidewalls are coplanar with the six-membered o-xylylene sidewalls. The molecule contains three nonclassical intramolecular C—H···S, C—H···O and C—H···N hydrogen bonds, and its crystal structure is stabilized mostly by intermolecular C—H···π interactions (Table 1).

Experimental

The thioglycoluril was synthesized according to a literature procedure, see : Broan et al., (1989). Preparation of the title compound: A solution of thioglycoluril (326 mg, 1.00 mmol), paraformaldehyde (120 mg, 4.00 mmol) and 1,4-dimethoxybenzene (304 mg, 2.20 mmol) in TFA (5 ml) was stirred and heated at reflux for 6 h. After rotary evaporation the residue was chromatographed to yield the tile compound (521 mg, 0.80 mmol,80%). Crystals of (I) suitable for X-ray diffraction were grown by slow evaporation of a dichloromethane-methanol (1:2) solution of the title compound under 293 K.

Refinement

All H atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93-0.98 Å and Uĩso~(H) = 1.2U~eq~(C) or Uĩso~(H) = 1.5U~eq~(C).

Figures

Fig. 1.
A view of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
Packing of (I) with C—H···π interactions drawn as dashed lines showing the formation of a one-dimensional chain.

Crystal data

C36H34N4O4S2F(000) = 1368
Mr = 650.79Dx = 1.327 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2697 reflections
a = 17.9993 (15) Åθ = 2.5–21.3°
b = 12.5069 (11) ŵ = 0.21 mm1
c = 16.0934 (12) ÅT = 298 K
β = 115.961 (3)°Block, colorless
V = 3257.3 (5) Å30.23 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2279 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.067
graphiteθmax = 27.0°, θmin = 2.1°
phi and ω scansh = −22→13
13570 measured reflectionsk = −15→15
3546 independent reflectionsl = −19→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.0878P)2] where P = (Fo2 + 2Fc2)/3
3546 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.11451 (4)0.22118 (5)0.14339 (5)0.0528 (3)
N10.09215 (11)0.31734 (13)0.27979 (13)0.0335 (5)
N2−0.00738 (11)0.34780 (13)0.14082 (13)0.0325 (4)
C130.07957 (13)0.50126 (16)0.32973 (15)0.0343 (5)
C90.16813 (14)0.27755 (17)0.35521 (17)0.0388 (6)
H9A0.19700.33710.39490.047*
H9B0.20360.24890.32940.047*
C120.03855 (13)0.39284 (16)0.29759 (15)0.0306 (5)
C100.06573 (14)0.29489 (16)0.18917 (16)0.0326 (5)
O20.06197 (14)0.16264 (16)0.57355 (15)0.0713 (6)
O10.24132 (13)0.08009 (14)0.37734 (15)0.0683 (6)
C10.15415 (14)0.19204 (17)0.41322 (17)0.0393 (6)
C20.10798 (15)0.21274 (17)0.46227 (17)0.0406 (6)
C60.19350 (16)0.09225 (18)0.42349 (19)0.0477 (7)
C180.13789 (15)0.53676 (19)0.30210 (19)0.0497 (7)
H180.15600.49160.26880.060*
C11−0.06462 (15)0.31850 (18)0.04628 (16)0.0392 (6)
H11A−0.03430.31570.00920.047*
H11B−0.10600.37420.02090.047*
C30.10368 (17)0.1344 (2)0.52320 (19)0.0512 (7)
C140.05429 (16)0.56979 (18)0.37978 (18)0.0463 (7)
H140.01500.54690.39880.056*
C40.14195 (17)0.0364 (2)0.5309 (2)0.0578 (8)
H40.1379−0.01560.57010.069*
C170.16966 (18)0.6394 (2)0.3237 (2)0.0655 (9)
H170.20860.66310.30450.079*
C50.18588 (18)0.0156 (2)0.4811 (2)0.0564 (8)
H50.2108−0.05080.48630.068*
C150.0865 (2)0.6717 (2)0.4019 (2)0.0638 (9)
H150.06930.71700.43600.077*
C160.1438 (2)0.7055 (2)0.3733 (2)0.0731 (10)
H160.16540.77420.38780.088*
C70.2729 (2)−0.0224 (2)0.3750 (3)0.0859 (11)
H7A0.2924−0.05500.43480.129*
H7B0.3178−0.01620.35830.129*
H7C0.2301−0.06580.33020.129*
C80.0599 (2)0.0907 (3)0.6401 (2)0.0865 (11)
H8A0.02410.03190.60940.130*
H8B0.03960.12690.67870.130*
H8C0.11460.06430.67750.130*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0520 (5)0.0520 (4)0.0612 (5)0.0130 (3)0.0311 (4)−0.0081 (3)
N10.0300 (11)0.0293 (9)0.0435 (12)0.0043 (7)0.0181 (9)0.0014 (8)
N20.0341 (11)0.0273 (9)0.0390 (11)0.0020 (8)0.0189 (9)−0.0016 (8)
C130.0316 (13)0.0300 (11)0.0397 (13)−0.0029 (9)0.0141 (10)0.0006 (9)
C90.0268 (13)0.0385 (13)0.0466 (14)0.0035 (10)0.0118 (11)0.0042 (10)
C120.0317 (12)0.0264 (10)0.0391 (12)0.0013 (9)0.0205 (10)0.0006 (9)
C100.0327 (13)0.0270 (11)0.0395 (14)−0.0012 (9)0.0170 (11)0.0011 (9)
O20.0922 (16)0.0662 (13)0.0746 (14)0.0174 (11)0.0543 (13)0.0311 (11)
O10.0756 (15)0.0481 (11)0.0968 (17)0.0248 (10)0.0521 (13)0.0162 (10)
C10.0328 (14)0.0343 (12)0.0433 (14)0.0000 (10)0.0097 (11)0.0030 (10)
C20.0390 (14)0.0331 (12)0.0430 (14)−0.0015 (10)0.0118 (12)0.0037 (10)
C60.0452 (16)0.0364 (13)0.0582 (17)0.0053 (11)0.0197 (13)0.0014 (11)
C180.0428 (16)0.0428 (14)0.0692 (19)−0.0048 (11)0.0300 (14)0.0017 (12)
C110.0397 (14)0.0408 (13)0.0357 (13)0.0020 (10)0.0153 (11)−0.0017 (10)
C30.0549 (18)0.0474 (15)0.0536 (17)−0.0009 (13)0.0259 (14)0.0083 (12)
C140.0582 (17)0.0334 (13)0.0518 (16)−0.0035 (11)0.0284 (14)−0.0037 (11)
C40.063 (2)0.0437 (15)0.0596 (18)0.0013 (13)0.0207 (16)0.0190 (13)
C170.0486 (18)0.0531 (17)0.091 (2)−0.0183 (14)0.0267 (17)0.0117 (16)
C50.065 (2)0.0345 (14)0.0639 (19)0.0073 (12)0.0226 (16)0.0073 (13)
C150.090 (2)0.0359 (14)0.0624 (19)−0.0065 (15)0.0304 (17)−0.0115 (13)
C160.084 (3)0.0387 (16)0.080 (2)−0.0232 (16)0.021 (2)−0.0042 (15)
C70.112 (3)0.055 (2)0.113 (3)0.0199 (19)0.070 (3)−0.0035 (18)
C80.099 (3)0.095 (3)0.076 (2)0.009 (2)0.048 (2)0.036 (2)

Geometric parameters (Å, °)

S1—C101.652 (2)C6—C51.381 (4)
N1—C101.351 (3)C18—C171.386 (4)
N1—C91.462 (3)C18—H180.9300
N1—C121.465 (3)C11—C2i1.511 (3)
N2—C101.371 (3)C11—H11A0.9700
N2—C12i1.450 (3)C11—H11B0.9700
N2—C111.462 (3)C3—C41.384 (4)
C13—C181.381 (3)C14—C151.381 (3)
C13—C141.382 (3)C14—H140.9300
C13—C121.522 (3)C4—C51.375 (4)
C9—C11.511 (3)C4—H40.9300
C9—H9A0.9700C17—C161.364 (4)
C9—H9B0.9700C17—H170.9300
C12—N2i1.450 (3)C5—H50.9300
C12—C12i1.553 (4)C15—C161.369 (4)
O2—C31.370 (3)C15—H150.9300
O2—C81.412 (3)C16—H160.9300
O1—C61.369 (3)C7—H7A0.9600
O1—C71.410 (3)C7—H7B0.9600
C1—C21.398 (3)C7—H7C0.9600
C1—C61.409 (3)C8—H8A0.9600
C2—C31.412 (3)C8—H8B0.9600
C2—C11i1.511 (3)C8—H8C0.9600
C10—N1—C9125.79 (19)N2—C11—H11A108.6
C10—N1—C12113.23 (17)C2i—C11—H11A108.6
C9—N1—C12120.91 (18)N2—C11—H11B108.6
C10—N2—C12i111.24 (18)C2i—C11—H11B108.6
C10—N2—C11122.26 (18)H11A—C11—H11B107.6
C12i—N2—C11120.09 (18)O2—C3—C4123.7 (2)
C18—C13—C14118.6 (2)O2—C3—C2116.3 (2)
C18—C13—C12120.1 (2)C4—C3—C2120.0 (3)
C14—C13—C12121.1 (2)C15—C14—C13121.0 (3)
N1—C9—C1113.92 (19)C15—C14—H14119.5
N1—C9—H9A108.8C13—C14—H14119.5
C1—C9—H9A108.8C5—C4—C3120.4 (2)
N1—C9—H9B108.8C5—C4—H4119.8
C1—C9—H9B108.8C3—C4—H4119.8
H9A—C9—H9B107.7C16—C17—C18120.0 (3)
N2i—C12—N1111.61 (16)C16—C17—H17120.0
N2i—C12—C13112.90 (18)C18—C17—H17120.0
N1—C12—C13112.20 (18)C4—C5—C6120.8 (2)
N2i—C12—C12i103.2 (2)C4—C5—H5119.6
N1—C12—C12i100.82 (17)C6—C5—H5119.6
C13—C12—C12i115.23 (12)C16—C15—C14119.4 (3)
N1—C10—N2108.02 (18)C16—C15—H15120.3
N1—C10—S1126.35 (17)C14—C15—H15120.3
N2—C10—S1125.57 (17)C17—C16—C15120.7 (3)
C3—O2—C8119.2 (2)C17—C16—H16119.7
C6—O1—C7118.2 (2)C15—C16—H16119.7
C2—C1—C6119.4 (2)O1—C7—H7A109.5
C2—C1—C9121.2 (2)O1—C7—H7B109.5
C6—C1—C9119.2 (2)H7A—C7—H7B109.5
C1—C2—C3119.4 (2)O1—C7—H7C109.5
C1—C2—C11i121.4 (2)H7A—C7—H7C109.5
C3—C2—C11i119.2 (2)H7B—C7—H7C109.5
O1—C6—C5123.9 (2)O2—C8—H8A109.5
O1—C6—C1116.0 (2)O2—C8—H8B109.5
C5—C6—C1120.0 (3)H8A—C8—H8B109.5
C13—C18—C17120.3 (3)O2—C8—H8C109.5
C13—C18—H18119.8H8A—C8—H8C109.5
C17—C18—H18119.8H8B—C8—H8C109.5
N2—C11—C2i114.50 (19)
C10—N1—C9—C1−106.3 (3)C7—O1—C6—C511.7 (4)
C12—N1—C9—C177.1 (3)C7—O1—C6—C1−171.6 (3)
C10—N1—C12—N2i122.1 (2)C2—C1—C6—O1−176.5 (2)
C9—N1—C12—N2i−60.9 (2)C9—C1—C6—O1−1.2 (3)
C10—N1—C12—C13−110.1 (2)C2—C1—C6—C50.4 (4)
C9—N1—C12—C1366.9 (2)C9—C1—C6—C5175.7 (2)
C10—N1—C12—C12i13.1 (2)C14—C13—C18—C17−0.5 (4)
C9—N1—C12—C12i−169.92 (18)C12—C13—C18—C17173.8 (2)
C18—C13—C12—N2i155.7 (2)C10—N2—C11—C2i70.0 (3)
C14—C13—C12—N2i−30.1 (3)C12i—N2—C11—C2i−79.4 (2)
C18—C13—C12—N128.6 (3)C8—O2—C3—C42.6 (4)
C14—C13—C12—N1−157.3 (2)C8—O2—C3—C2−175.9 (3)
C18—C13—C12—C12i−86.0 (3)C1—C2—C3—O2175.8 (2)
C14—C13—C12—C12i88.1 (3)C11i—C2—C3—O2−2.3 (4)
C9—N1—C10—N2−179.57 (19)C1—C2—C3—C4−2.8 (4)
C12—N1—C10—N2−2.7 (2)C11i—C2—C3—C4179.0 (2)
C9—N1—C10—S1−2.1 (3)C18—C13—C14—C150.0 (4)
C12—N1—C10—S1174.75 (16)C12—C13—C14—C15−174.3 (2)
C12i—N2—C10—N1−10.2 (2)O2—C3—C4—C5−177.0 (3)
C11—N2—C10—N1−162.05 (19)C2—C3—C4—C51.5 (4)
C12i—N2—C10—S1172.29 (15)C13—C18—C17—C160.6 (4)
C11—N2—C10—S120.5 (3)C3—C4—C5—C60.8 (4)
N1—C9—C1—C2−61.3 (3)O1—C6—C5—C4174.9 (2)
N1—C9—C1—C6123.5 (2)C1—C6—C5—C4−1.8 (4)
C6—C1—C2—C31.8 (4)C13—C14—C15—C160.5 (4)
C9—C1—C2—C3−173.4 (2)C18—C17—C16—C15−0.2 (5)
C6—C1—C2—C11i180.0 (2)C14—C15—C16—C17−0.4 (5)
C9—C1—C2—C11i4.8 (3)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cg1ii0.972.703.540145
C11—H11A···O2ii0.972.262.757 (3)111
C14—H14···N2ii0.932.562.879 (3)101
C18—H18···N10.932.512.842 (3)102
C9—H9B···S10.972.733.189 (3)110
C9—H9B···O10.972.252.748 (3)111

Symmetry codes: (ii) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2304).

References

  • Broan, C. J., Butler, A. R., Reed, D. & Sadler, I. H. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 731–740.
  • Bruker (2001). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cao, L., Ding, J., Yin, G., Gao, M., Li, Y. & Wu, A. (2009). Synlett, pp. 1445–1448.
  • Gao, M., Cao, L., Wang, Z., Sun, J., She, N. & Wu, A. (2009). Synlett, pp. 315–319.
  • Hof, F., Craig, S. L., Nuckolls, C. & Rebek, J. Jr (2002). Angew. Chem. Int. Ed.41, 1488–1508. [PubMed]
  • Kang, J., Jo, J.-H. & In, S. (2004). Tetrahedron Lett.45, 5225–5228.
  • Kolbel, M. & Menger, F. M. (2001). Chem. Commun. pp. 275–276.
  • Rowan, A. E., Elemans, J. A. A. W. & Nolte, R. J. M. (1999). Acc. Chem. Res.32, 995–1006.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, Z. & Xi, H. (2009). Acta Cryst. E65, o1426. [PMC free article] [PubMed]
  • Wang, Z., Zhou, B., Chen, Y., Yin, G., Li, Y., Wu, A. & Isaacs, L. (2006). J. Org. Chem.71, 4502–4508. [PubMed]
  • Wu, A., Chakraborty, A., Witt, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. & Isaacs, L. (2002). J. Org. Chem.67, 5817–5830. [PubMed]
  • Wu, Y. & Sun, Y. (2009). Acta Cryst. E65, o1715. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography