PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m821.
Published online 2010 June 18. doi:  10.1107/S1600536810022907
PMCID: PMC3006727

catena-Poly[[(1,10-phenanthroline-κ2 N,N′)lead(II)]-μ-azido-κ2 N 1:N 3-μ-nitrito-κ3 O,O′:O′-[(1,10-phenanthroline-κ2 N,N′)lead(II)]-di-μ-azido-κ4 N 1:N 1]

Abstract

The title coordination polymer, [Pb2(N3)3(NO2)(C12H8N2)2]n, has as the repeat unit a centrosymmetric dinuclear mol­ecule having azide and nitrite groups that bridge adjacent heterocycle-coordinated metal centers. One of the azide group uses its terminal ends to bridge whereas the nitrite group chelates to one metal atom and uses one of its O atoms to bridge. The azide and nitrite groups are disordered with respect to each other in a 1:1 ratio. Adjacent dinuclear mol­ecules are further bridged by the other two azide groups, generating a linear chain motif parallel to [010]. Half of the Pb atoms show a Ψ-dodeca­hedral coordination and the other half show a Ψ-penta­gonal-bipyramidal coordination.

Related literature

For the crystal structure of a related lead azide complex, see: Marandi et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m821-scheme1.jpg

Experimental

Crystal data

  • [Pb2(N3)3(NO2)(C12H8N2)2]
  • M r = 946.89
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m821-efi1.jpg
  • a = 7.6860 (5) Å
  • b = 9.2056 (6) Å
  • c = 9.9080 (7) Å
  • α = 90.541 (1)°
  • β = 109.665 (1)°
  • γ = 104.626 (1)°
  • V = 635.32 (7) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 13.29 mm−1
  • T = 100 K
  • 0.30 × 0.30 × 0.30 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.040, T max = 0.109
  • 6004 measured reflections
  • 2888 independent reflections
  • 2716 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.071
  • S = 1.03
  • 2888 reflections
  • 193 parameters
  • 12 restraints
  • H-atom parameters constrained
  • Δρmax = 2.17 e Å−3
  • Δρmin = −1.97 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810022907/xu2775sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022907/xu2775Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Shahid Beheshti University (project No. 600/2097) and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

There are a number of 1,10-phenanthroline-chelated lead(II) compounds having inorganic anions (having only few atoms) as counterions whose crystal structures have been reported. For some, two counterions exist in the crystal structure that originally came from the reactants used in the synthesis.

The azide derivative is a polymeric dinuclear chain compound in which the lead atoms show PbN8 and PbN6O2 dodecahedral coordination. In lead azide nicotinate, the azide unit engages in µ3 bridging (Marandi et al., 2007). In Pb2(N3)3(NO2)(C12H8NO)2 (Scheme I, Fig. 1), the azide groups bridge adjacent heterocycle-coordinated metal centers through one nitrogen atom and the third bridging through two nitrogen atoms. The nitrite group chelates to one metal atom and uses one oxygen atom to bind to the inversion-related lead atom. The bridging interactions lead to the formation of a linear chain motif. One of the azide groups that uses its terminal nitrogen atoms to bridge is disordered with respect to the nitrite group in a 1:1 ratio. The disorder gives rise to a Ψ-dodecahedral geometry for 50% of the lead atoms and a Ψ-pentagonal bipyramidal geometry for the other 50% of the lead atoms.

Experimental

1,10-Phenanthroline (0.36 g, 2 mmol) and sodium azide (0.13 g, 1 mmol) were placed in one arm of a convection tube, and lead(II) nitrate (0.33 g, 1 mmol) and sodium nitrite (0.07 g, 1 mmol) in the other. Methanol was then added to fill both arms and the tube was sealed. The ligand-containing arm was immersed in an oil bath at 333 K, whereas the other was left at ambient temperature. After 1 day, crystals deposited in the arm that was kept at ambient temperature.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H = 0.95 Å; U(H) = 1.2Ueq(C)] in the riding model approximation.

One of the two azide ions (N1, N2, N3) is disordered with respect to a nitrite ion (O1, O2, N3); the N3 atom is ordered. The N1 and O1 atoms occupy the same site; the atoms are give half occupancy and the same temperature factors. The N2 atom is disordered with respect to the O2 atom but they do not occupy the same site; their temperature factors were also restrained to be identical.

The final difference fourier map had a large peak/deep hole in the vicinity of the lead atom.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of Pb2(N3)3(NO2)(C12H8NO)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry code: i = 1 - x, 1 - y, 1 - z.

Crystal data

[Pb2(N3)3(NO2)(C12H8N2)2]Z = 1
Mr = 946.89F(000) = 438
Triclinic, P1Dx = 2.475 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6860 (5) ÅCell parameters from 4831 reflections
b = 9.2056 (6) Åθ = 2.3–28.3°
c = 9.9080 (7) ŵ = 13.29 mm1
α = 90.541 (1)°T = 100 K
β = 109.665 (1)°Irregular, yellow
γ = 104.626 (1)°0.30 × 0.30 × 0.30 mm
V = 635.32 (7) Å3

Data collection

Bruker SMART APEX diffractometer2888 independent reflections
Radiation source: fine-focus sealed tube2716 reflections with I > 2σ(I)
graphiteRint = 0.033
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.040, Tmax = 0.109k = −11→11
6004 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0348P)2 + 1.3333P] where P = (Fo2 + 2Fc2)/3
2888 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 2.17 e Å3
12 restraintsΔρmin = −1.97 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Pb10.56829 (3)0.79283 (2)0.561361 (19)0.00881 (8)
O10.7795 (7)0.6258 (5)0.7489 (5)0.0169 (9)0.50
O20.5962 (13)0.4948 (9)0.5579 (9)0.0197 (14)0.50
N10.7795 (7)0.6258 (5)0.7489 (5)0.0169 (9)0.50
N20.7445 (16)0.3876 (12)0.6296 (11)0.0197 (14)0.50
N30.7470 (8)0.5047 (5)0.6855 (5)0.0156 (10)
N40.3085 (7)0.9214 (6)0.5147 (5)0.0168 (10)
N50.1522 (7)0.8609 (5)0.5166 (5)0.0136 (10)
N6−0.0006 (8)0.8055 (6)0.5194 (6)0.0260 (12)
N70.4053 (6)0.6818 (5)0.7324 (5)0.0090 (9)
N80.6931 (7)0.9476 (5)0.8019 (5)0.0085 (9)
C10.2609 (8)0.5559 (6)0.6968 (6)0.0124 (11)
H10.20330.51420.59880.015*
C20.1915 (8)0.4829 (6)0.7996 (7)0.0148 (11)
H20.09000.39240.77180.018*
C30.2717 (8)0.5438 (6)0.9397 (6)0.0138 (11)
H30.22540.49581.01010.017*
C40.4224 (8)0.6771 (6)0.9804 (6)0.0106 (10)
C50.4849 (8)0.7444 (6)0.8717 (6)0.0084 (10)
C60.5120 (8)0.7478 (6)1.1264 (6)0.0131 (11)
H60.47260.70081.20020.016*
C70.6505 (8)0.8794 (7)1.1603 (6)0.0132 (11)
H70.70650.92441.25720.016*
C80.7146 (7)0.9524 (6)1.0510 (6)0.0080 (10)
C90.6343 (7)0.8846 (6)0.9074 (6)0.0081 (10)
C100.8545 (8)1.0937 (6)1.0810 (6)0.0110 (11)
H100.91081.14331.17620.013*
C110.9080 (8)1.1579 (6)0.9729 (6)0.0115 (11)
H111.00021.25320.99110.014*
C120.8231 (8)1.0797 (6)0.8329 (6)0.0093 (10)
H120.86151.12430.75770.011*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pb10.01002 (12)0.00884 (11)0.00691 (11)0.00024 (7)0.00383 (8)−0.00010 (7)
O10.017 (2)0.016 (2)0.017 (2)0.0021 (18)0.0072 (19)−0.0037 (17)
O20.024 (4)0.018 (3)0.017 (3)0.004 (3)0.009 (3)−0.004 (2)
N10.017 (2)0.016 (2)0.017 (2)0.0021 (18)0.0072 (19)−0.0037 (17)
N20.024 (4)0.018 (3)0.017 (3)0.004 (3)0.009 (3)−0.004 (2)
N30.021 (3)0.014 (2)0.012 (2)0.005 (2)0.006 (2)−0.0002 (18)
N40.011 (3)0.025 (3)0.017 (3)0.007 (2)0.006 (2)0.008 (2)
N50.015 (3)0.017 (2)0.010 (2)0.006 (2)0.0042 (19)0.0014 (18)
N60.017 (3)0.027 (3)0.031 (3)0.002 (2)0.007 (2)0.004 (2)
N70.006 (2)0.010 (2)0.011 (2)0.0017 (17)0.0026 (18)0.0018 (17)
N80.009 (2)0.008 (2)0.007 (2)0.0025 (17)0.0007 (18)−0.0018 (16)
C10.008 (3)0.012 (3)0.014 (3)−0.001 (2)0.003 (2)−0.002 (2)
C20.007 (3)0.012 (3)0.023 (3)−0.002 (2)0.006 (2)0.002 (2)
C30.010 (3)0.013 (3)0.022 (3)0.003 (2)0.010 (2)0.004 (2)
C40.010 (3)0.012 (3)0.013 (3)0.006 (2)0.005 (2)0.002 (2)
C50.008 (3)0.010 (2)0.007 (2)0.004 (2)0.003 (2)0.0022 (19)
C60.016 (3)0.017 (3)0.010 (3)0.004 (2)0.008 (2)0.003 (2)
C70.014 (3)0.020 (3)0.008 (3)0.009 (2)0.004 (2)0.001 (2)
C80.003 (2)0.011 (2)0.010 (3)0.0033 (19)0.002 (2)−0.0006 (19)
C90.005 (3)0.010 (2)0.010 (3)0.0045 (19)0.002 (2)−0.0016 (19)
C100.007 (3)0.014 (3)0.011 (3)0.005 (2)0.001 (2)−0.004 (2)
C110.007 (3)0.008 (2)0.016 (3)0.0001 (19)0.002 (2)−0.002 (2)
C120.006 (3)0.009 (2)0.013 (3)0.0025 (19)0.004 (2)0.0006 (19)

Geometric parameters (Å, °)

Pb1—N42.487 (5)C1—H10.9500
Pb1—N72.510 (4)C2—C31.363 (8)
Pb1—N82.517 (4)C2—H20.9500
Pb1—N2i2.642 (11)C3—C41.403 (8)
Pb1—O2i2.693 (8)C3—H30.9500
Pb1—N4ii2.764 (5)C4—C51.410 (8)
O1—N31.200 (6)C4—C61.441 (8)
O2—N31.382 (10)C5—C91.442 (7)
O2—Pb1i2.693 (8)C6—C71.347 (8)
N2—N31.200 (11)C6—H60.9500
N2—Pb1i2.642 (11)C7—C81.440 (8)
N4—N51.196 (7)C7—H70.9500
N4—Pb1ii2.764 (5)C8—C91.412 (7)
N5—N61.166 (7)C8—C101.417 (7)
N7—C11.334 (7)C10—C111.360 (8)
N7—C51.360 (7)C10—H100.9500
N8—C121.321 (7)C11—C121.416 (7)
N8—C91.353 (7)C11—H110.9500
C1—C21.404 (8)C12—H120.9500
N4—Pb1—N778.10 (15)C3—C2—C1119.1 (5)
N4—Pb1—N882.36 (16)C3—C2—H2120.4
N7—Pb1—N866.32 (15)C1—C2—H2120.4
N4—Pb1—N2i72.7 (3)C2—C3—C4120.3 (5)
N7—Pb1—N2i81.9 (3)C2—C3—H3119.9
N8—Pb1—N2i143.0 (2)C4—C3—H3119.9
N4—Pb1—O2i107.5 (2)C3—C4—C5117.6 (5)
N7—Pb1—O2i78.2 (2)C3—C4—C6123.0 (5)
N8—Pb1—O2i140.5 (2)C5—C4—C6119.4 (5)
N2i—Pb1—O2i36.6 (3)N7—C5—C4121.6 (5)
N4—Pb1—N4ii70.67 (18)N7—C5—C9118.7 (5)
N7—Pb1—N4ii135.88 (14)C4—C5—C9119.6 (5)
N8—Pb1—N4ii79.09 (15)C7—C6—C4121.3 (5)
N2i—Pb1—N4ii116.0 (3)C7—C6—H6119.4
O2i—Pb1—N4ii140.4 (2)C4—C6—H6119.4
N3—O2—Pb1i111.5 (5)C6—C7—C8120.5 (5)
N3—N2—Pb1i123.2 (7)C6—C7—H7119.7
O1—N3—N2170.0 (8)C8—C7—H7119.7
O1—N3—O2107.1 (5)C9—C8—C10117.7 (5)
N2—N3—O280.7 (7)C9—C8—C7119.9 (5)
N5—N4—Pb1123.2 (4)C10—C8—C7122.4 (5)
N5—N4—Pb1ii127.3 (4)N8—C9—C8121.9 (5)
Pb1—N4—Pb1ii109.33 (18)N8—C9—C5118.9 (5)
N6—N5—N4178.2 (6)C8—C9—C5119.2 (5)
C1—N7—C5119.3 (5)C11—C10—C8119.7 (5)
C1—N7—Pb1123.0 (4)C11—C10—H10120.2
C5—N7—Pb1117.2 (3)C8—C10—H10120.2
C12—N8—C9119.0 (4)C10—C11—C12118.6 (5)
C12—N8—Pb1123.5 (3)C10—C11—H11120.7
C9—N8—Pb1117.2 (3)C12—C11—H11120.7
N7—C1—C2122.0 (5)N8—C12—C11123.0 (5)
N7—C1—H1119.0N8—C12—H12118.5
C2—C1—H1119.0C11—C12—H12118.5
Pb1i—N2—N3—O1−169 (4)N7—C1—C2—C31.1 (9)
Pb1i—N2—N3—O2−27.1 (7)C1—C2—C3—C4−0.4 (8)
Pb1i—O2—N3—O1−162.7 (4)C2—C3—C4—C50.4 (8)
Pb1i—O2—N3—N223.7 (7)C2—C3—C4—C6179.4 (5)
N7—Pb1—N4—N5−36.2 (4)C1—N7—C5—C41.9 (8)
N8—Pb1—N4—N5−103.5 (5)Pb1—N7—C5—C4−170.4 (4)
N2i—Pb1—N4—N548.8 (5)C1—N7—C5—C9−176.9 (5)
O2i—Pb1—N4—N537.2 (5)Pb1—N7—C5—C910.8 (6)
N4ii—Pb1—N4—N5175.4 (6)C3—C4—C5—N7−1.2 (8)
N7—Pb1—N4—Pb1ii148.4 (2)C6—C4—C5—N7179.8 (5)
N8—Pb1—N4—Pb1ii81.06 (19)C3—C4—C5—C9177.6 (5)
N2i—Pb1—N4—Pb1ii−126.5 (3)C6—C4—C5—C9−1.4 (8)
O2i—Pb1—N4—Pb1ii−138.2 (2)C3—C4—C6—C7−177.0 (6)
N4ii—Pb1—N4—Pb1ii0.0C5—C4—C6—C72.0 (8)
N4—Pb1—N7—C190.6 (4)C4—C6—C7—C8−0.7 (8)
N8—Pb1—N7—C1177.4 (5)C6—C7—C8—C9−1.2 (8)
N2i—Pb1—N7—C116.7 (5)C6—C7—C8—C10177.5 (5)
O2i—Pb1—N7—C1−20.3 (4)C12—N8—C9—C8−3.1 (7)
N4ii—Pb1—N7—C1135.9 (4)Pb1—N8—C9—C8171.4 (4)
N4—Pb1—N7—C5−97.4 (4)C12—N8—C9—C5176.7 (5)
N8—Pb1—N7—C5−10.6 (3)Pb1—N8—C9—C5−8.8 (6)
N2i—Pb1—N7—C5−171.3 (4)C10—C8—C9—N82.7 (7)
O2i—Pb1—N7—C5151.7 (4)C7—C8—C9—N8−178.6 (5)
N4ii—Pb1—N7—C5−52.1 (4)C10—C8—C9—C5−177.0 (5)
N4—Pb1—N8—C12−95.5 (4)C7—C8—C9—C51.7 (7)
N7—Pb1—N8—C12−175.8 (4)N7—C5—C9—N8−1.3 (7)
N2i—Pb1—N8—C12−142.9 (5)C4—C5—C9—N8179.9 (5)
O2i—Pb1—N8—C12156.2 (4)N7—C5—C9—C8178.4 (5)
N4ii—Pb1—N8—C12−23.8 (4)C4—C5—C9—C8−0.4 (7)
N4—Pb1—N8—C990.3 (4)C9—C8—C10—C11−0.6 (7)
N7—Pb1—N8—C910.0 (3)C7—C8—C10—C11−179.3 (5)
N2i—Pb1—N8—C942.9 (6)C8—C10—C11—C12−0.9 (8)
O2i—Pb1—N8—C9−18.0 (5)C9—N8—C12—C111.4 (8)
N4ii—Pb1—N8—C9161.9 (4)Pb1—N8—C12—C11−172.7 (4)
C5—N7—C1—C2−1.8 (8)C10—C11—C12—N80.6 (8)
Pb1—N7—C1—C2170.0 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2775).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Marandi, F., Mirtamizdoust, B., Chantrapromma, S. & Fun, H.-K. (2007). Z. Anorg. Allg. Chem.633, 1329–1332.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography