PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m778–m779.
Published online 2010 June 16. doi:  10.1107/S1600536810021628
PMCID: PMC3006726

{N,N′-Bis[1-(2-pyrid­yl)ethyl­idene]ethane-1,2-diamine-κ4 N,N′,N′′,N′′′}(thio­cyanato-κN)zinc(II) perchlorate

Abstract

In the title compound, [Zn(NCS)(C16H18N4)]ClO4, the ZnII atom is five-coordinated by four N atoms of the Schiff base ligand N,N′-bis­[1-(2-pyrid­yl)ethyl­idene]ethane-1,2-diamine in the basal plane, and by the N atom of a thio­cyanate ligand at the apical position, forming a distorted square-pyramidal geometry. The r.m.s. deviation from a plane through the four N atoms of the Schiff base is 0.015 (3) Å, and the deviation of the Ni atom from that plane is 0.591 (2) Å. Bond lengths are comparable with those observed in similar zinc(II) complexes with Schiff bases. The two methyl­ene C atoms of the ethane-1,2-diamine bridge of the Schiff base ligand are disordered over two sites with occupancies of 0.587 (3) and 0.413 (3).

Related literature

For background to Schiff base compounds and their applications, see: Ruck & Jacobsen (2002 [triangle]); Mukhopadhyay et al. (2003 [triangle]); Polt et al. (2003 [triangle]); Mukherjee et al. (2001 [triangle]). For complexes derived from N,N′-bis­(1-(pyridin-2-yl)ethyl­idene)ethane-1,2-diamine, see: Gourbatsis et al. (1998 [triangle]); Louloudi et al. (1999 [triangle]); Karmakar et al. (2002 [triangle]); Banerjee et al. (2004 [triangle]). For bond lengths in similar zinc(II) complexes with Schiff bases, see: Ghosh et al. (2006 [triangle]); Chen et al. (2005 [triangle]). For the synthesis of the Schiff base ligand, see: Gourbatsis et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m778-scheme1.jpg

Experimental

Crystal data

  • [Zn(NCS)(C16H18N4)]ClO4
  • M r = 489.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m778-efi1.jpg
  • a = 8.685 (2) Å
  • b = 13.963 (3) Å
  • c = 17.374 (2) Å
  • β = 99.690 (3)°
  • V = 2076.9 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.45 mm−1
  • T = 298 K
  • 0.32 × 0.30 × 0.30 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.655, T max = 0.671
  • 16681 measured reflections
  • 4529 independent reflections
  • 2534 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.170
  • S = 1.02
  • 4529 reflections
  • 282 parameters
  • 48 restraints
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.66 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021628/sj5017sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021628/sj5017Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by Dezhou University, People’s Republic of China.

supplementary crystallographic information

Comment

Metal complexes with Schiff bases have been known since 1840. The Schiff bases and their complexes have played an important role in the development of coordination chemistry, biological and material sciences (Ruck & Jacobsen, 2002; Mukhopadhyay et al., 2003; Polt et al., 2003; Mukherjee et al., 2001). Several complexes derived from N,N'-bis(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine have been reported (Gourbatsis et al., 1998; Louloudi et al., 1999; Karmakar et al., 2002; Banerjee et al., 2004). In this paper, the title new zinc(II) complex is reported.

The title compound consists of a mononuclear zinc(II) complex cation and a perchlorate anion, Fig. 1. The ZnII atom is five-coordinated by four N atoms of the Schiff base ligand N,N'-bis(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine, and by one N atom of a thiocyanate ligand, forming a square pyramidal geometry. The coordinate bond lengths (Table 1) are comparable to those observed in other similar zinc(II) complexes with Schiff bases (Ghosh et al., 2006; Chen et al., 2005).

Experimental

The Schiff base ligand N,N'-bis(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine was synthesized according to the literature method (Gourbatsis et al., 1990). To a stirred methanol solution of the Schiff base ligand (1.0 mmol, 0.266 g) was added a methanol solution of zinc(II) perchlorate (1.0 mmol, 0.390 g) and ammonium thiocyanate (1.0 mmol, 0.076 g). The mixture was boiled under reflux for 2 h, then cooled to room temperature. Colourless block-like single crystals, suitable for X-ray diffraction, were formed after slow evaporation of the solution in air for a few days.

Refinement

Hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(Cmethyl). The C8 and C9 atoms are disordered over two sites with occupancies of 0.587 (3) and 0.413 (3).

Figures

Fig. 1.
The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Only the major component of the disordered group is shown.

Crystal data

[Zn(NCS)(C16H18N4)]ClO4F(000) = 1000
Mr = 489.24Dx = 1.565 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2719 reflections
a = 8.685 (2) Åθ = 2.4–25.0°
b = 13.963 (3) ŵ = 1.45 mm1
c = 17.374 (2) ÅT = 298 K
β = 99.690 (3)°Block, colourless
V = 2076.9 (7) Å30.32 × 0.30 × 0.30 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer4529 independent reflections
Radiation source: fine-focus sealed tube2534 reflections with I > 2σ(I)
graphiteRint = 0.056
ω scanθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→10
Tmin = 0.655, Tmax = 0.671k = −17→16
16681 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0792P)2 + 0.7526P] where P = (Fo2 + 2Fc2)/3
4529 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.50 e Å3
48 restraintsΔρmin = −0.66 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Zn10.40268 (7)0.18336 (3)0.23821 (3)0.0532 (2)
Cl10.13446 (17)0.32198 (10)0.93392 (9)0.0761 (4)
S10.80304 (19)0.18105 (12)0.08648 (10)0.0888 (5)
O10.1863 (9)0.2376 (4)0.9693 (3)0.170 (3)
O20.2281 (6)0.3965 (4)0.9651 (3)0.145 (2)
O30.1346 (6)0.3155 (3)0.8524 (2)0.0975 (14)
O4−0.0172 (5)0.3397 (4)0.9480 (3)0.1246 (19)
N10.2700 (4)0.3093 (2)0.2175 (2)0.0516 (9)
N40.2661 (4)0.0604 (3)0.2040 (2)0.0547 (10)
N50.5483 (6)0.1840 (3)0.1618 (3)0.0725 (13)
C10.1666 (6)0.3311 (4)0.1535 (3)0.0640 (13)
H10.14350.28530.11440.077*
C20.0928 (6)0.4194 (4)0.1434 (3)0.0724 (15)
H20.02340.43280.09780.087*
C30.1231 (7)0.4857 (4)0.2009 (4)0.0762 (16)
H30.07280.54470.19590.091*
C40.2296 (6)0.4645 (3)0.2672 (3)0.0673 (14)
H40.25310.50970.30670.081*
C50.3015 (6)0.3754 (3)0.2744 (3)0.0524 (11)
C60.4210 (6)0.3474 (3)0.3435 (3)0.0608 (13)
C70.4484 (8)0.4109 (4)0.4138 (3)0.0881 (19)
H7A0.35140.42160.43200.132*
H7B0.49020.47100.40030.132*
H7C0.52120.38080.45430.132*
N20.4901 (5)0.2687 (3)0.3355 (3)0.0713 (12)0.59 (3)
N30.4830 (4)0.0850 (3)0.3273 (2)0.0537 (10)0.59 (3)
C80.573 (2)0.2217 (8)0.4079 (7)0.076 (4)0.59 (3)
H8A0.50770.22310.44810.092*0.59 (3)
H8B0.66910.25570.42720.092*0.59 (3)
C90.6085 (18)0.1192 (11)0.3889 (10)0.073 (6)0.59 (3)
H9A0.70830.11590.37090.088*0.59 (3)
H9B0.61410.07950.43510.088*0.59 (3)
N2'0.4901 (5)0.2687 (3)0.3355 (3)0.0713 (12)0.41 (3)
N3'0.4830 (4)0.0850 (3)0.3273 (2)0.0537 (10)0.41 (3)
C8'0.6313 (16)0.2226 (10)0.3782 (13)0.058 (5)0.41 (3)
H8'A0.67390.25870.42470.070*0.41 (3)
H8'B0.71090.21580.34560.070*0.41 (3)
C9'0.571 (3)0.1262 (15)0.3990 (8)0.058 (6)0.41 (3)
H9'A0.65700.08460.42010.070*0.41 (3)
H9'B0.50350.13350.43790.070*0.41 (3)
C100.4124 (6)0.0058 (3)0.3271 (3)0.0531 (12)
C110.4348 (8)−0.0665 (4)0.3924 (3)0.0878 (19)
H11A0.5251−0.04970.42990.132*
H11B0.4493−0.12900.37160.132*
H11C0.3442−0.06700.41740.132*
C120.2956 (5)−0.0134 (3)0.2555 (3)0.0518 (11)
C130.2222 (6)−0.1010 (4)0.2399 (3)0.0714 (15)
H130.2424−0.15090.27560.086*
C140.1198 (7)−0.1136 (4)0.1718 (4)0.089 (2)
H140.0677−0.17160.16140.107*
C150.0947 (7)−0.0406 (5)0.1193 (4)0.093 (2)
H150.0289−0.04910.07170.112*
C160.1684 (6)0.0465 (4)0.1376 (3)0.0775 (16)
H160.14870.09680.10220.093*
C170.6548 (7)0.1821 (3)0.1302 (3)0.0544 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0591 (4)0.0415 (3)0.0582 (4)−0.0002 (3)0.0079 (3)0.0004 (2)
Cl10.0691 (9)0.0799 (10)0.0767 (9)−0.0045 (8)0.0053 (7)−0.0098 (8)
S10.0678 (10)0.1090 (13)0.0936 (12)0.0072 (9)0.0252 (9)0.0140 (9)
O10.247 (6)0.129 (4)0.128 (4)0.090 (4)0.019 (4)0.038 (4)
O20.128 (4)0.170 (5)0.139 (4)−0.084 (4)0.031 (3)−0.071 (4)
O30.117 (3)0.115 (3)0.063 (2)−0.004 (3)0.023 (2)−0.015 (2)
O40.054 (3)0.207 (6)0.119 (4)0.000 (3)0.031 (3)−0.013 (3)
N10.058 (2)0.045 (2)0.052 (2)0.0013 (18)0.0111 (18)0.0031 (17)
N40.050 (2)0.050 (2)0.062 (2)0.0005 (18)0.0044 (19)−0.0043 (19)
N50.088 (3)0.055 (3)0.080 (3)0.003 (2)0.032 (3)0.009 (2)
C10.072 (3)0.062 (3)0.057 (3)0.003 (3)0.009 (3)0.001 (2)
C20.077 (4)0.062 (3)0.077 (4)0.018 (3)0.008 (3)0.017 (3)
C30.085 (4)0.058 (3)0.088 (4)0.022 (3)0.017 (3)0.013 (3)
C40.076 (4)0.043 (3)0.086 (4)0.001 (3)0.024 (3)−0.005 (3)
C50.057 (3)0.045 (3)0.058 (3)−0.009 (2)0.018 (2)0.001 (2)
C60.068 (3)0.043 (3)0.069 (3)−0.012 (2)0.002 (3)−0.001 (2)
C70.115 (5)0.061 (3)0.079 (4)−0.008 (3)−0.009 (3)−0.017 (3)
N20.064 (3)0.053 (3)0.088 (3)−0.001 (2)−0.015 (2)−0.004 (2)
N30.055 (2)0.049 (2)0.055 (2)−0.0005 (19)0.0049 (18)−0.0021 (18)
C80.073 (8)0.071 (6)0.080 (7)−0.002 (5)−0.002 (6)−0.008 (5)
C90.080 (9)0.063 (8)0.071 (8)0.004 (6)−0.003 (6)−0.007 (5)
N2'0.064 (3)0.053 (3)0.088 (3)−0.001 (2)−0.015 (2)−0.004 (2)
N3'0.055 (2)0.049 (2)0.055 (2)−0.0005 (19)0.0049 (18)−0.0021 (18)
C8'0.044 (7)0.058 (7)0.069 (8)−0.001 (6)0.001 (6)−0.010 (6)
C9'0.068 (9)0.051 (9)0.051 (8)0.005 (7)−0.003 (7)0.004 (6)
C100.065 (3)0.039 (2)0.057 (3)0.008 (2)0.017 (2)0.000 (2)
C110.129 (6)0.055 (3)0.076 (4)−0.006 (3)0.008 (4)0.009 (3)
C120.048 (3)0.043 (3)0.068 (3)0.004 (2)0.020 (2)−0.007 (2)
C130.065 (4)0.050 (3)0.098 (4)−0.007 (3)0.013 (3)−0.006 (3)
C140.076 (4)0.058 (4)0.129 (6)−0.015 (3)0.001 (4)−0.021 (4)
C150.077 (4)0.085 (5)0.104 (5)−0.011 (4)−0.023 (4)−0.023 (4)
C160.071 (4)0.069 (4)0.084 (4)0.001 (3)−0.011 (3)−0.004 (3)
C170.065 (3)0.038 (2)0.058 (3)0.001 (2)0.002 (3)0.007 (2)

Geometric parameters (Å, °)

Zn1—N51.982 (5)C7—H7C0.9600
Zn1—N32.099 (4)N2—C81.492 (8)
Zn1—N12.100 (4)N3—C101.264 (5)
Zn1—N22.102 (4)N3—C91.472 (8)
Zn1—N42.115 (4)C8—C91.513 (10)
Cl1—O11.370 (5)C8—H8A0.9700
Cl1—O21.374 (4)C8—H8B0.9700
Cl1—O41.401 (4)C9—H9A0.9700
Cl1—O31.419 (4)C9—H9B0.9700
S1—C171.601 (6)C8'—C9'1.512 (10)
N1—C11.340 (6)C8'—H8'A0.9700
N1—C51.347 (5)C8'—H8'B0.9700
N4—C161.327 (6)C9'—H9'A0.9700
N4—C121.359 (6)C9'—H9'B0.9700
N5—C171.153 (7)C10—C121.492 (6)
C1—C21.387 (7)C10—C111.508 (7)
C1—H10.9300C11—H11A0.9600
C2—C31.355 (7)C11—H11B0.9600
C2—H20.9300C11—H11C0.9600
C3—C41.382 (7)C12—C131.385 (6)
C3—H30.9300C13—C141.368 (8)
C4—C51.388 (6)C13—H130.9300
C4—H40.9300C14—C151.360 (8)
C5—C61.501 (7)C14—H140.9300
C6—N21.271 (6)C15—C161.387 (7)
C6—C71.495 (7)C15—H150.9300
C7—H7A0.9600C16—H160.9300
C7—H7B0.9600
N5—Zn1—N3109.08 (17)C6—N2—Zn1117.7 (3)
N5—Zn1—N1105.95 (16)C8—N2—Zn1119.2 (5)
N3—Zn1—N1141.17 (14)C10—N3—C9125.9 (9)
N5—Zn1—N2110.56 (19)C10—N3—Zn1118.0 (3)
N3—Zn1—N275.37 (15)C9—N3—Zn1115.9 (8)
N1—Zn1—N277.12 (15)N2—C8—C9108.5 (11)
N5—Zn1—N4101.91 (17)N2—C8—H8A110.0
N3—Zn1—N477.11 (14)C9—C8—H8A110.0
N1—Zn1—N4111.48 (15)N2—C8—H8B110.0
N2—Zn1—N4142.71 (17)C9—C8—H8B110.0
O1—Cl1—O2110.3 (5)H8A—C8—H8B108.4
O1—Cl1—O4108.8 (4)N3—C9—C8108.2 (9)
O2—Cl1—O4108.0 (3)N3—C9—H9A110.1
O1—Cl1—O3109.7 (3)C8—C9—H9A110.1
O2—Cl1—O3110.0 (3)N3—C9—H9B110.1
O4—Cl1—O3110.1 (3)C8—C9—H9B110.1
C1—N1—C5118.6 (4)H9A—C9—H9B108.4
C1—N1—Zn1127.1 (3)C9'—C8'—H8'A111.3
C5—N1—Zn1114.2 (3)C9'—C8'—H8'B111.3
C16—N4—C12118.9 (4)H8'A—C8'—H8'B109.2
C16—N4—Zn1127.5 (4)C8'—C9'—H9'A110.2
C12—N4—Zn1113.3 (3)C8'—C9'—H9'B110.2
C17—N5—Zn1166.6 (5)H9'A—C9'—H9'B108.5
N1—C1—C2122.5 (5)N3—C10—C12114.9 (4)
N1—C1—H1118.7N3—C10—C11125.6 (5)
C2—C1—H1118.7C12—C10—C11119.4 (4)
C3—C2—C1119.1 (5)C10—C11—H11A109.5
C3—C2—H2120.5C10—C11—H11B109.5
C1—C2—H2120.5H11A—C11—H11B109.5
C2—C3—C4119.2 (5)C10—C11—H11C109.5
C2—C3—H3120.4H11A—C11—H11C109.5
C4—C3—H3120.4H11B—C11—H11C109.5
C3—C4—C5119.7 (5)N4—C12—C13120.8 (4)
C3—C4—H4120.1N4—C12—C10116.0 (4)
C5—C4—H4120.1C13—C12—C10123.2 (4)
N1—C5—C4121.0 (5)C14—C13—C12119.6 (5)
N1—C5—C6115.9 (4)C14—C13—H13120.2
C4—C5—C6123.1 (5)C12—C13—H13120.2
N2—C6—C7126.1 (5)C15—C14—C13119.4 (5)
N2—C6—C5114.4 (4)C15—C14—H14120.3
C7—C6—C5119.5 (5)C13—C14—H14120.3
C6—C7—H7A109.5C14—C15—C16119.2 (5)
C6—C7—H7B109.5C14—C15—H15120.4
H7A—C7—H7B109.5C16—C15—H15120.4
C6—C7—H7C109.5N4—C16—C15122.0 (5)
H7A—C7—H7C109.5N4—C16—H16119.0
H7B—C7—H7C109.5C15—C16—H16119.0
C6—N2—C8117.1 (7)N5—C17—S1179.2 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5017).

References

  • Banerjee, S., Gangopadhyay, J., Lu, C.-Z., Chen, J.-T. & Ghosh, A. (2004). Eur. J. Inorg. Chem. pp. 2533–2541.
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, G., Bai, Z.-P. & Qu, S.-J. (2005). Acta Cryst. E61, m2483–m2484.
  • Ghosh, R., Rahaman, S. H., Lin, C.-N., Lu, T.-H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112.
  • Gourbatsis, S., Hadjiliadis, N., Perlepes, S. P., Garoufis, A. & Butler, I. S. (1998). Transition Met. Chem.23, 599–604.
  • Gourbatsis, S., Perlepes, S. P., Hadjiliadis, N. & Kalkanis, G. (1990). Transition Met. Chem.15, 300–308.
  • Karmakar, T. K., Chandra, S. K., Ribas, J., Mostafa, G., Lu, T. H. & Ghosh, B. K. (2002). Chem. Commun. pp. 2364–2365. [PubMed]
  • Louloudi, M., Nastopoulos, V., Gourbatsis, S., Perlepes, S. P. & Hadjiliadis, N. (1999). Inorg. Chem. Commun.2, 479–483.
  • Mukherjee, P. S., Dalai, S., Mostafa, G., Lu, T.-H., Rentschler, E. & Chaudhuri, N. R. (2001). New J. Chem.25, 1203–1207.
  • Mukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem.42, 8439–8445. [PubMed]
  • Polt, R., Kelly, B. D., Dangel, B. D., Tadikonda, U. B., Ross, R. E., Raitsimring, A. M. & Astashkin, A. V. (2003). Inorg. Chem.42, 566–574. [PubMed]
  • Ruck, R. T. & Jacobsen, E. N. (2002). J. Am. Chem. Soc.124, 2882–2883. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography