PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m729–m730.
Published online 2010 June 5. doi:  10.1107/S1600536810020283
PMCID: PMC3006723

Bis{2-[(diisopropyl­phosphan­yl)amino]­pyridine-κ2 N 1,P}copper(I) hexa­fluorido­phosphate

Abstract

The crystal structure of the title compound, [Cu(C11H19N2P)2]PF6, is composed of discrete [Cu(PN-iPr)2]+ cations [PN-iPr is 2-(diisopropyl­phosphanyl­amino)­pyridine] and PF6 anions. The Cu(I) atom is bis-chelated by two independent PN-iPr ligands. It has a distorted tetra­hedral coordination by two P atoms [Cu—P = 2.2277 (4) and 2.2257 (4) Å] and two pyridine N atoms [Cu—N = 2.0763 (11) and 2.0845 (12) Å]. Bond angles about Cu vary from 85.11 (3) (P—Cu—N) to 130.37 (2)° (P—Cu—P). In the crystal, N—H(...)F hydrogen bonds link the Cu complexes and the PF6 anions into continuous chains, which show a cross-bedded spatial arrangement. In addition, several weaker C—H(...)F inter­actions contribute to the coherence of the structure.

Related literature

For the synthesis and crystal structures of PN-complexes [PN are 2-(phosphanyl­amino)­pyridines], see: Aucott et al. (2000 [triangle]); Benito-Garagorri, Mereiter & Kirchner (2007 [triangle]); Standfest-Hauser et al. (2009 [triangle]). For applications of PN-complexes in catalysis, see: Aguirre et al. (2007 [triangle]); Benito-Garagorri, Wieder­mann et al. (2007 [triangle]). For the chemistry and crystal structures of related PNP-complexes [PNP = 2,6-bis­(phos­phanyl­amino)­pyridine], see: Benito-Garagorri et al. (2006 [triangle]). For crystal structures of other related Cu(I) complexes, see: Hursthouse et al. (2003 [triangle]); Healy (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m729-scheme1.jpg

Experimental

Crystal data

  • [Cu(C11H19N2P)2]PF6
  • M r = 629.01
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m729-efi2.jpg
  • a = 11.0357 (13) Å
  • b = 9.2129 (11) Å
  • c = 14.4282 (17) Å
  • β = 96.723 (1)°
  • V = 1456.8 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.97 mm−1
  • T = 100 K
  • 0.45 × 0.22 × 0.20 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.65, T max = 0.75
  • 21170 measured reflections
  • 8422 independent reflections
  • 8187 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.054
  • S = 1.02
  • 8422 reflections
  • 334 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.26 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 4180 Friedel pairs, merohedral twin with twin proportions refined
  • Flack parameter: 0.410 (4)

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT, SADABS and XPREP (Bruker, 2008 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020283/zs2038sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020283/zs2038Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Heterobidentate pyridylphosphane ligands (PN-ligands) in which 2-pyridyl and phosphane moieties are linked by an amino group as spacer are of interest in organometallic chemistry because they contain both hard (nitrogen) and soft (phosphorus) donor atoms at P—N distances of about 3 Å, very suitable for the chelation of transition metals. Moreover, they are readily accessible in a modular fashion via the ease of phosphane-nitrogen bond-forming reactions (e.g. Benito-Garagorri et al., 2006). Some transition metal complexes of these ligands, mainly with diphenylphosphane moieties, are catalytically active and have been applied for carbonylation of olefins and other transformations (Aguirre et al., 2007; Benito-Garagorri, Wiedermann et al., 2007). In continuation of earlier work on Ni(II), Pd(II), and Mo(0/II)-complexes of such ligands (Benito-Garagorri, Mereiter & Kirchner, 2007; Standfest-Hauser et al., 2009) we recently focused on Cu(I) complexes and report here the synthesis and crystal structure of the title compound [Cu(PN-iPr)2]PF6. A view of the asymmetric unit is shown in Fig. 1. Copper is bis-chelated by two independent PN-iPr ligands and adopts a strongly distorted tetrahedral coordination by two P and two N atoms with well-balanced bond distances of Cu1—P1 = 2.2277 (4) Å, Cu1—P2 = 2.2257 (4) Å, Cu1—N1 = 2.0763 (11) Å, and Cu1—N3 = 2.0845 (12) Å. Bond angles about Cu vary from ca. 85° for the two bite angles P1—Cu1—N1 and P2—Cu1—N3 to 130.37 (2)° for P1—Cu1—P2. The twist angle between the planes P1—Cu1—P2 and N1—Cu—N3 is 60.50 (3)° and thus about 30° off from 90°, the value for an ideal undistorted coordination tetrahedron. The complex approaches a molecular non-crystallographic C2 symmetry, which makes both PN-iPr ligands pseudo-equivalent; this includes also the isopropyl groups and their orientations (Fig. 1). A Cu(I)(PN)2 complex closely related in ligand characteristics to that of the title compound was reported for bis(6-chloro-2-(diphenylphosphinoamino)benzothiazole)copper(I) hexafluoridophosphate (Hursthouse et al., 2003); it has Cu—P ≈ 2.26 Å, Cu—N ≈ 2.06 Å, and a twist angle P—Cu—P vs. N—Cu—N of 63.2°. Cu(I) complexes with separate non-chelating two P- and two N-ligands have generally more regular CuP2N2 tetrahedra with twist angles P—Cu—P vs. N—Cu—N near 90°, e.g. bis(pyridine)-bis(triphenylphosphane)copper(I) tetrafluoridoborate (Healy, 2008).

A characteristic feature of PN-iPr ligands and their homologues is the acidity of the N—H bond (here N2—H2N and N4—H4N), which is a good hydrogen bond donor. In the title compound each NH group is hydrogen bonded to the F-atom of an adjacent PF6 octahedron at N···F distances of ca. 3.1 Å (Table 1). These hydrogen bonds link the cation and anion complexes into infinite chains, which extend parallel to [110] at z ≈ 0.15 and parallel to [110] at z ≈ 0.65 resulting in a cross-bedded arangement (Fig. 2). Several weaker C—H···F interactions contribute to the coherence of the structure. The most significant two of them with H···F < 2.6 Å are included in Table 1, seven more have H···F distances in the range 2.60 to 2.70 Å.

Experimental

To a solution of [Cu(CH3CN)4]PF6 (100 mg, 0.27 mmol) in THF (10 ml) 2-(diisopropylphosphanylamino)pyridine (PN-iPr; 112.8 mg, 0.54 mmol; for synthesis, see: Benito-Garagorri, Mereiter & Kirchner, 2007) was added and the solution was stirred for 12 h. After removal of the solvent a white powder was obtained which was washed with Et2O and dried under vacuum. Yield: 100 mg (89%). 1H-NMR (δ, acetone, 20 °C): 7.83 (s, 1H, py), 7.69 (s, 1H, py), 7.23 (s, 1H, py), 7.06 (s, 1H, py), 6.78 (s, 1H, NH), 2.90 (s, 2H, CH), 1.22 (s, 12H, CH3). 31P{1H} NMR (δ, acetone, 20 °C): 50.53. Colourless crystals for X-ray diffraction were obtained by evaporation crystallization from acetone.

Refinement

All H atoms were placed in calculated positions and thereafter treated as riding. A torsional parameter was refined for each methyl group. Uiso(H) = 1.2Ueq(Cnon-methyl) and Uiso(H) = 1.5Ueq(Cmethyl) were used. The title compound is racemic but crystallizes in a non-centrosymmetric polar lattice, space group Pn. The Flack test indicated that the investigated crystal is a merohedral (polar) twin. In the final refinement this was taken into account by the use of the instructions TWIN and BASF of program SHELXL97 (Sheldrick, 2008). According to this refinement the amounts of the two twin components are 0.590 (4) and 0.410 (4).

Figures

Fig. 1.
The asymmetric unit of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. The red broken line shows one of the C—H···F interactions listed in Table 1.
Fig. 2.
Packing diagram of (I) showing two N—H···F hydrogen bonded chains of [Cu(PN-iPr)2]+ cations and PF6- anions. Upper chain extends parallel to [110], lower chain parallel to [110], C-bonded H atoms omitted for clarity.

Crystal data

[Cu(C11H19N2P)2]PF6F(000) = 652
Mr = 629.01Dx = 1.434 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 9966 reflections
a = 11.0357 (13) Åθ = 2.5–30.0°
b = 9.2129 (11) ŵ = 0.97 mm1
c = 14.4282 (17) ÅT = 100 K
β = 96.723 (1)°Block, colourless
V = 1456.8 (3) Å30.45 × 0.22 × 0.20 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer8422 independent reflections
Radiation source: fine-focus sealed tube8187 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −15→15
Tmin = 0.65, Tmax = 0.75k = −12→12
21170 measured reflectionsl = −20→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.054w = 1/[σ2(Fo2) + (0.0327P)2 + 0.1922P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
8422 reflectionsΔρmax = 0.35 e Å3
334 parametersΔρmin = −0.26 e Å3
2 restraintsAbsolute structure: Flack (1983), 4180 Friedel pairs, merohedral twin with twin proportions refined
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.410 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.545130 (11)0.141471 (15)0.626623 (10)0.01477 (4)
P10.38719 (3)0.26283 (4)0.55383 (2)0.01685 (6)
P20.72626 (3)0.09024 (3)0.58123 (2)0.01465 (6)
N10.50957 (10)0.25486 (12)0.74483 (8)0.0155 (2)
N20.34515 (12)0.35253 (13)0.64884 (8)0.0209 (2)
H2N0.28300.41290.64110.025*
N30.54844 (10)−0.07232 (12)0.67416 (8)0.0168 (2)
N40.74461 (10)−0.07879 (12)0.62954 (8)0.0180 (2)
H4N0.8145−0.12410.62810.022*
C10.40583 (12)0.33308 (14)0.73755 (9)0.0164 (2)
C20.36015 (13)0.39407 (15)0.81595 (10)0.0198 (2)
H20.28520.44590.80950.024*
C30.42655 (14)0.37681 (15)0.90213 (10)0.0215 (3)
H30.39780.41730.95600.026*
C40.53606 (13)0.29988 (15)0.91019 (9)0.0207 (3)
H40.58420.28930.96880.025*
C50.57229 (12)0.23970 (14)0.83056 (9)0.0178 (2)
H50.64550.18440.83620.021*
C60.24294 (13)0.18007 (18)0.50231 (11)0.0249 (3)
H60.18140.25840.48600.030*
C70.26381 (16)0.0977 (2)0.41411 (12)0.0325 (3)
H7A0.31870.01570.43040.049*
H7B0.30050.16290.37150.049*
H7C0.18560.06160.38360.049*
C80.19540 (16)0.0774 (3)0.57232 (13)0.0435 (5)
H8A0.25680.00270.59060.065*
H8B0.12010.03110.54390.065*
H8C0.17860.13210.62760.065*
C90.41591 (14)0.40856 (16)0.47148 (10)0.0228 (3)
H90.42340.36090.41010.027*
C100.53711 (19)0.4818 (2)0.50186 (15)0.0423 (4)
H10A0.55600.55000.45350.063*
H10B0.60150.40820.51140.063*
H10C0.53220.53440.56030.063*
C110.3130 (2)0.5190 (3)0.45456 (15)0.0473 (5)
H11A0.30890.57640.51130.071*
H11B0.23540.46820.43830.071*
H11C0.32850.58350.40320.071*
C120.65306 (12)−0.14630 (13)0.67082 (9)0.0161 (2)
C130.67045 (13)−0.28684 (15)0.70895 (11)0.0218 (3)
H130.7447−0.33760.70550.026*
C140.57773 (14)−0.34880 (15)0.75124 (12)0.0269 (3)
H140.5874−0.44320.77750.032*
C150.46883 (14)−0.27208 (17)0.75539 (12)0.0280 (3)
H150.4039−0.31280.78460.034*
C160.45880 (13)−0.13615 (15)0.71590 (11)0.0220 (3)
H160.3848−0.08430.71810.026*
C170.87311 (12)0.17551 (15)0.62197 (10)0.0195 (2)
H170.94000.10740.60990.023*
C180.88851 (16)0.31683 (17)0.56853 (12)0.0278 (3)
H18A0.82170.38340.57780.042*
H18B0.88710.29550.50190.042*
H18C0.96660.36200.59180.042*
C190.88143 (15)0.20342 (19)0.72714 (10)0.0278 (3)
H19A0.96290.24010.74970.042*
H19B0.86670.11260.75940.042*
H19C0.82000.27540.73960.042*
C200.73108 (13)0.05665 (15)0.45568 (9)0.0205 (2)
H200.71850.15170.42240.025*
C210.62513 (16)−0.0434 (2)0.41957 (11)0.0319 (3)
H21A0.6225−0.05430.35180.048*
H21B0.5482−0.00120.43440.048*
H21C0.6369−0.13870.44940.048*
C220.85233 (15)−0.00667 (18)0.43271 (11)0.0284 (3)
H22A0.8741−0.09070.47290.043*
H22B0.91630.06720.44340.043*
H22C0.8441−0.03710.36720.043*
P30.55962 (3)0.31567 (4)0.21299 (3)0.01976 (7)
F10.62918 (10)0.43352 (14)0.15595 (8)0.0398 (3)
F20.48767 (9)0.20025 (11)0.26926 (7)0.0333 (2)
F30.46624 (12)0.28652 (18)0.12151 (7)0.0542 (4)
F40.65102 (12)0.34760 (14)0.30470 (9)0.0516 (4)
F50.64776 (15)0.19392 (16)0.18453 (16)0.0785 (6)
F60.47085 (12)0.43906 (12)0.24247 (9)0.0434 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01443 (6)0.01369 (7)0.01602 (7)0.00390 (6)0.00110 (5)−0.00054 (6)
P10.01635 (13)0.01949 (15)0.01425 (13)0.00588 (12)−0.00017 (11)−0.00045 (12)
P20.01461 (13)0.01342 (14)0.01588 (14)0.00242 (11)0.00163 (10)0.00086 (11)
N10.0170 (5)0.0150 (5)0.0149 (5)0.0012 (4)0.0026 (4)0.0010 (4)
N20.0227 (5)0.0232 (6)0.0166 (5)0.0126 (4)0.0011 (4)0.0002 (4)
N30.0160 (5)0.0143 (5)0.0201 (5)0.0010 (4)0.0017 (4)−0.0007 (4)
N40.0152 (5)0.0154 (5)0.0236 (5)0.0045 (4)0.0031 (4)0.0051 (4)
C10.0191 (6)0.0135 (5)0.0166 (6)0.0022 (4)0.0026 (4)0.0003 (4)
C20.0250 (6)0.0142 (6)0.0215 (6)0.0028 (5)0.0086 (5)−0.0007 (5)
C30.0300 (7)0.0174 (6)0.0184 (6)−0.0044 (5)0.0088 (5)−0.0032 (5)
C40.0262 (6)0.0211 (6)0.0148 (5)−0.0068 (5)0.0019 (5)0.0010 (5)
C50.0181 (5)0.0168 (6)0.0181 (6)−0.0018 (4)0.0009 (4)0.0024 (4)
C60.0180 (6)0.0313 (7)0.0239 (7)0.0052 (5)−0.0038 (5)−0.0009 (6)
C70.0363 (8)0.0344 (8)0.0256 (7)−0.0071 (7)−0.0008 (6)−0.0060 (6)
C80.0217 (7)0.0752 (15)0.0336 (9)−0.0164 (8)0.0036 (6)0.0046 (9)
C90.0270 (7)0.0248 (7)0.0162 (6)0.0058 (5)0.0010 (5)0.0019 (5)
C100.0443 (10)0.0269 (8)0.0513 (11)−0.0091 (7)−0.0123 (8)0.0144 (8)
C110.0472 (11)0.0484 (12)0.0475 (11)0.0239 (9)0.0106 (9)0.0275 (9)
C120.0150 (5)0.0146 (5)0.0182 (6)0.0005 (4)0.0000 (4)−0.0010 (4)
C130.0204 (6)0.0139 (6)0.0304 (7)0.0019 (5)0.0007 (5)0.0021 (5)
C140.0256 (7)0.0151 (6)0.0399 (9)−0.0017 (5)0.0038 (6)0.0056 (6)
C150.0242 (7)0.0209 (7)0.0406 (8)−0.0029 (5)0.0105 (6)0.0057 (6)
C160.0175 (6)0.0200 (6)0.0290 (7)0.0006 (5)0.0056 (5)0.0007 (5)
C170.0178 (6)0.0192 (6)0.0216 (6)−0.0013 (5)0.0020 (5)0.0007 (5)
C180.0316 (7)0.0235 (7)0.0287 (7)−0.0067 (6)0.0056 (6)0.0017 (6)
C190.0268 (7)0.0336 (8)0.0217 (7)−0.0065 (6)−0.0034 (5)−0.0007 (6)
C200.0250 (6)0.0197 (6)0.0169 (6)0.0061 (5)0.0024 (5)0.0005 (5)
C210.0324 (8)0.0368 (9)0.0251 (7)0.0005 (7)−0.0024 (6)−0.0088 (6)
C220.0309 (7)0.0307 (8)0.0253 (6)0.0071 (6)0.0104 (6)−0.0018 (6)
P30.01635 (14)0.02039 (15)0.02286 (16)−0.00373 (12)0.00365 (12)−0.00201 (13)
F10.0306 (5)0.0534 (7)0.0353 (5)−0.0215 (5)0.0030 (4)0.0106 (5)
F20.0329 (5)0.0303 (5)0.0366 (5)−0.0113 (4)0.0039 (4)0.0085 (4)
F30.0530 (7)0.0899 (10)0.0193 (4)−0.0476 (7)0.0026 (4)−0.0051 (5)
F40.0451 (7)0.0571 (8)0.0453 (7)−0.0261 (6)−0.0252 (5)0.0224 (6)
F50.0594 (9)0.0427 (8)0.1435 (17)0.0108 (7)0.0543 (10)−0.0213 (9)
F60.0505 (6)0.0329 (6)0.0500 (6)0.0158 (5)0.0188 (5)0.0059 (5)

Geometric parameters (Å, °)

Cu1—N12.0763 (11)C10—H10A0.9800
Cu1—N32.0845 (12)C10—H10B0.9800
Cu1—P22.2257 (4)C10—H10C0.9800
Cu1—P12.2277 (4)C11—H11A0.9800
P1—N21.7107 (12)C11—H11B0.9800
P1—C61.8415 (16)C11—H11C0.9800
P1—C91.8446 (15)C12—C131.4112 (18)
P2—N41.7084 (12)C13—C141.375 (2)
P2—C171.8347 (14)C13—H130.9500
P2—C201.8446 (14)C14—C151.401 (2)
N1—C11.3464 (16)C14—H140.9500
N1—C51.3521 (16)C15—C161.375 (2)
N2—C11.3850 (17)C15—H150.9500
N2—H2N0.8800C16—H160.9500
N3—C121.3464 (16)C17—C191.531 (2)
N3—C161.3516 (18)C17—C181.533 (2)
N4—C121.3795 (17)C17—H171.0000
N4—H4N0.8800C18—H18A0.9800
C1—C21.4080 (18)C18—H18B0.9800
C2—C31.377 (2)C18—H18C0.9800
C2—H20.9500C19—H19A0.9800
C3—C41.394 (2)C19—H19B0.9800
C3—H30.9500C19—H19C0.9800
C4—C51.3766 (19)C20—C221.531 (2)
C4—H40.9500C20—C211.531 (2)
C5—H50.9500C20—H201.0000
C6—C81.522 (3)C21—H21A0.9800
C6—C71.522 (2)C21—H21B0.9800
C6—H61.0000C21—H21C0.9800
C7—H7A0.9800C22—H22A0.9800
C7—H7B0.9800C22—H22B0.9800
C7—H7C0.9800C22—H22C0.9800
C8—H8A0.9800P3—F51.5704 (13)
C8—H8B0.9800P3—F61.5907 (11)
C8—H8C0.9800P3—F41.5944 (12)
C9—C101.516 (2)P3—F31.5993 (11)
C9—C111.523 (2)P3—F21.6036 (10)
C9—H91.0000P3—F11.6103 (11)
N1—Cu1—N3101.70 (4)H10B—C10—H10C109.5
N1—Cu1—P2127.66 (3)C9—C11—H11A109.5
N3—Cu1—P285.11 (3)C9—C11—H11B109.5
N1—Cu1—P185.53 (3)H11A—C11—H11B109.5
N3—Cu1—P1127.73 (3)C9—C11—H11C109.5
P2—Cu1—P1130.374 (15)H11A—C11—H11C109.5
N2—P1—C6102.75 (7)H11B—C11—H11C109.5
N2—P1—C9104.34 (7)N3—C12—N4117.49 (12)
C6—P1—C9104.30 (7)N3—C12—C13121.91 (12)
N2—P1—Cu197.78 (4)N4—C12—C13120.59 (12)
C6—P1—Cu1125.04 (5)C14—C13—C12118.66 (13)
C9—P1—Cu1119.02 (5)C14—C13—H13120.7
N4—P2—C17101.62 (6)C12—C13—H13120.7
N4—P2—C20103.42 (6)C13—C14—C15119.73 (13)
C17—P2—C20105.10 (6)C13—C14—H14120.1
N4—P2—Cu198.10 (4)C15—C14—H14120.1
C17—P2—Cu1127.23 (5)C16—C15—C14118.00 (13)
C20—P2—Cu1117.04 (5)C16—C15—H15121.0
C1—N1—C5117.79 (11)C14—C15—H15121.0
C1—N1—Cu1116.49 (9)N3—C16—C15123.59 (13)
C5—N1—Cu1125.01 (9)N3—C16—H16118.2
C1—N2—P1122.07 (9)C15—C16—H16118.2
C1—N2—H2N119.0C19—C17—C18111.02 (13)
P1—N2—H2N119.0C19—C17—P2109.74 (10)
C12—N3—C16118.11 (12)C18—C17—P2110.39 (10)
C12—N3—Cu1116.65 (9)C19—C17—H17108.5
C16—N3—Cu1124.90 (9)C18—C17—H17108.5
C12—N4—P2121.95 (9)P2—C17—H17108.5
C12—N4—H4N119.0C17—C18—H18A109.5
P2—N4—H4N119.0C17—C18—H18B109.5
N1—C1—N2117.13 (12)H18A—C18—H18B109.5
N1—C1—C2122.14 (12)C17—C18—H18C109.5
N2—C1—C2120.73 (12)H18A—C18—H18C109.5
C3—C2—C1118.48 (13)H18B—C18—H18C109.5
C3—C2—H2120.8C17—C19—H19A109.5
C1—C2—H2120.8C17—C19—H19B109.5
C2—C3—C4119.91 (12)H19A—C19—H19B109.5
C2—C3—H3120.0C17—C19—H19C109.5
C4—C3—H3120.0H19A—C19—H19C109.5
C5—C4—C3117.96 (13)H19B—C19—H19C109.5
C5—C4—H4121.0C22—C20—C21110.42 (13)
C3—C4—H4121.0C22—C20—P2113.76 (10)
N1—C5—C4123.66 (13)C21—C20—P2109.05 (10)
N1—C5—H5118.2C22—C20—H20107.8
C4—C5—H5118.2C21—C20—H20107.8
C8—C6—C7110.05 (15)P2—C20—H20107.8
C8—C6—P1109.78 (11)C20—C21—H21A109.5
C7—C6—P1109.61 (11)C20—C21—H21B109.5
C8—C6—H6109.1H21A—C21—H21B109.5
C7—C6—H6109.1C20—C21—H21C109.5
P1—C6—H6109.1H21A—C21—H21C109.5
C6—C7—H7A109.5H21B—C21—H21C109.5
C6—C7—H7B109.5C20—C22—H22A109.5
H7A—C7—H7B109.5C20—C22—H22B109.5
C6—C7—H7C109.5H22A—C22—H22B109.5
H7A—C7—H7C109.5C20—C22—H22C109.5
H7B—C7—H7C109.5H22A—C22—H22C109.5
C6—C8—H8A109.5H22B—C22—H22C109.5
C6—C8—H8B109.5F5—P3—F6179.62 (11)
H8A—C8—H8B109.5F5—P3—F489.87 (10)
C6—C8—H8C109.5F6—P3—F489.76 (8)
H8A—C8—H8C109.5F5—P3—F391.33 (10)
H8B—C8—H8C109.5F6—P3—F389.04 (8)
C10—C9—C11111.42 (16)F4—P3—F3178.79 (9)
C10—C9—P1110.47 (11)F5—P3—F290.99 (8)
C11—C9—P1114.10 (12)F6—P3—F288.94 (6)
C10—C9—H9106.8F4—P3—F290.28 (6)
C11—C9—H9106.8F3—P3—F289.83 (6)
P1—C9—H9106.8F5—P3—F190.06 (8)
C9—C10—H10A109.5F6—P3—F190.01 (7)
C9—C10—H10B109.5F4—P3—F190.38 (6)
H10A—C10—H10B109.5F3—P3—F189.49 (6)
C9—C10—H10C109.5F2—P3—F1178.76 (6)
H10A—C10—H10C109.5
N1—Cu1—P1—N2−3.58 (6)N2—C1—C2—C3−177.28 (13)
N3—Cu1—P1—N297.77 (6)C1—C2—C3—C4−0.2 (2)
P2—Cu1—P1—N2−141.14 (5)C2—C3—C4—C5−1.8 (2)
N1—Cu1—P1—C6−115.16 (7)C1—N1—C5—C4−0.2 (2)
N3—Cu1—P1—C6−13.82 (8)Cu1—N1—C5—C4−170.10 (10)
P2—Cu1—P1—C6107.27 (6)C3—C4—C5—N12.1 (2)
N1—Cu1—P1—C9107.62 (6)N2—P1—C6—C8−60.40 (14)
N3—Cu1—P1—C9−151.03 (7)C9—P1—C6—C8−169.05 (13)
P2—Cu1—P1—C9−29.94 (6)Cu1—P1—C6—C848.75 (14)
N1—Cu1—P2—N494.55 (6)N2—P1—C6—C7178.60 (11)
N3—Cu1—P2—N4−6.47 (5)C9—P1—C6—C769.95 (13)
P1—Cu1—P2—N4−143.64 (4)Cu1—P1—C6—C7−72.24 (13)
N1—Cu1—P2—C17−16.78 (7)N2—P1—C9—C1075.95 (13)
N3—Cu1—P2—C17−117.80 (7)C6—P1—C9—C10−176.57 (13)
P1—Cu1—P2—C17105.03 (6)Cu1—P1—C9—C10−31.59 (14)
N1—Cu1—P2—C20−155.83 (6)N2—P1—C9—C11−50.50 (15)
N3—Cu1—P2—C20103.16 (6)C6—P1—C9—C1156.98 (15)
P1—Cu1—P2—C20−34.02 (6)Cu1—P1—C9—C11−158.05 (13)
N3—Cu1—N1—C1−118.85 (9)C16—N3—C12—N4−178.83 (12)
P2—Cu1—N1—C1148.29 (8)Cu1—N3—C12—N4−5.15 (16)
P1—Cu1—N1—C18.79 (9)C16—N3—C12—C130.3 (2)
N3—Cu1—N1—C551.21 (11)Cu1—N3—C12—C13173.97 (10)
P2—Cu1—N1—C5−41.64 (12)P2—N4—C12—N3−1.76 (17)
P1—Cu1—N1—C5178.85 (11)P2—N4—C12—C13179.10 (11)
C6—P1—N2—C1127.56 (12)N3—C12—C13—C14−0.5 (2)
C9—P1—N2—C1−123.82 (12)N4—C12—C13—C14178.60 (14)
Cu1—P1—N2—C1−1.12 (12)C12—C13—C14—C150.1 (2)
N1—Cu1—N3—C12−120.07 (10)C13—C14—C15—C160.4 (2)
P2—Cu1—N3—C127.42 (9)C12—N3—C16—C150.3 (2)
P1—Cu1—N3—C12146.52 (8)Cu1—N3—C16—C15−172.84 (12)
N1—Cu1—N3—C1653.13 (12)C14—C15—C16—N3−0.6 (3)
P2—Cu1—N3—C16−179.38 (11)N4—P2—C17—C19−70.36 (11)
P1—Cu1—N3—C16−40.29 (13)C20—P2—C17—C19−177.88 (10)
C17—P2—N4—C12137.45 (11)Cu1—P2—C17—C1939.33 (12)
C20—P2—N4—C12−113.74 (11)N4—P2—C17—C18166.96 (10)
Cu1—P2—N4—C126.67 (11)C20—P2—C17—C1859.45 (12)
C5—N1—C1—N2177.49 (12)Cu1—P2—C17—C18−83.34 (11)
Cu1—N1—C1—N2−11.70 (15)N4—P2—C20—C22−62.05 (12)
C5—N1—C1—C2−2.08 (19)C17—P2—C20—C2244.15 (12)
Cu1—N1—C1—C2168.72 (10)Cu1—P2—C20—C22−168.57 (9)
P1—N2—C1—N18.39 (18)N4—P2—C20—C2161.68 (11)
P1—N2—C1—C2−172.03 (11)C17—P2—C20—C21167.88 (10)
N1—C1—C2—C32.3 (2)Cu1—P2—C20—C21−44.84 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2N···F1i0.882.243.1038 (15)167
N4—H4N···F3ii0.882.263.1185 (16)167
C2—H2···F4i0.952.413.306 (2)158
C20—H20···F41.002.533.502 (2)164

Symmetry codes: (i) x−1/2, −y+1, z+1/2; (ii) x+1/2, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2038).

References

  • Aguirre, P. A., Lagos, C. A., Moya, S. A., Zúñiga, C., Vera-Oyarce, C., Sola, E., Peris, G. & Bayón, J. C. (2007). Dalton Trans. pp. 5419–5426 [PubMed]
  • Aucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2000). J. Chem. Soc. Dalton Trans. pp. 2559–2575.
  • Benito-Garagorri, D., Becker, E., Wiedermann, J., Lackner, W., Pollak, M., Mereiter, K., Kisala, J. & Kirchner, K. (2006). Organometallics, 25, 1900–1913.
  • Benito-Garagorri, D., Mereiter, K. & Kirchner, K. (2007). Collect. Czech. Chem. Commun.72, 527–540.
  • Benito-Garagorri, D., Wiedermann, J., Pollak, M., Mereiter, K. & Kirchner, K. (2007). Organometallics, 26, 217–222.
  • Bruker (2008). APEX2, SAINT, SADABS and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Healy, P. C. (2008). Acta Cryst. E64, m607. [PMC free article] [PubMed]
  • Hursthouse, M. B., Coles, S. J. & Smith, M. B. (2003). Private communication (refcode: MEJZAD). CCDC, Union Road, Cambridge, England.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Standfest-Hauser, C. M., Dazinger, G., Wiedermann, J., Mereiter, K. & Kirchner, K. (2009). Eur. J. Inorg. Chem. pp. 4085–4093.
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography