PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1707–o1708.
Published online 2010 June 18. doi:  10.1107/S1600536810022804
PMCID: PMC3006721

Ammonium [(1S)-(endo,anti)]-(−)-3-bromo­camphor-8-sulfonate

Abstract

In the title mol­ecular salt, NH4 +·C10H14BrO4S, the norbornane skeleton of the anion is composed of two five-membered rings in envelope conformations and a six-membered ring with one Br atom, one carbonyl O atom and a methyl group held in a boat conformation by a bridging methyl­ene group. Short intra­molecular C—H(...)O and C—H(...)Br inter­actions occur. In the crystal, the component ions are linked by inter­molecular N—H(...)O and C—H(...)O hydrogen bonds.

Related literature

For further synthetic details, see: Smith et al. (2008 [triangle]). For other structures with the norbornane skeleton, see: Jauch et al. (1992 [triangle]); Ustabaş et al. (2006 [triangle]); Ersanlı et al. (2005 [triangle]). For the use of 3-bromo­camphor-8-sulfonic acid and its ammonium salts as chiral auxillaries for the optical resolution of enanti­omeric amines through diasteriomeric salt formation, see: Bálint et al. (1999 [triangle]); Pellati et al. (2010 [triangle]); Roy et al. (2009 [triangle]); Zhao et al. (2002 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1707-scheme1.jpg

Experimental

Crystal data

  • NH4 +·C10H14BrO4S
  • M r = 328.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1707-efi1.jpg
  • a = 7.2449 (2) Å
  • b = 7.0049 (1) Å
  • c = 13.2428 (3) Å
  • β = 104.704 (1)°
  • V = 650.06 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.33 mm−1
  • T = 296 K
  • 0.42 × 0.14 × 0.11 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: refined from ΔF (XABS2; Parkin et al., 1995 [triangle]) T min = 0.336, T max = 0.711
  • 2775 measured reflections
  • 2775 independent reflections
  • 2586 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.065
  • S = 1.03
  • 2775 reflections
  • 168 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.47 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1155 Freidel pairs
  • Flack parameter: −0.021 (7)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]), PARST (Nardelli, 1983 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810022804/hb5484sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022804/hb5484Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission for financial support to purchase the diffractometer.

supplementary crystallographic information

Comment

3-Bromocamphor-8-sulfonic acid and its ammonium salts have extensively been used as chiral auxillaries for the optical resolution of a number of enantiomeric amines through diasteriomeric salt formation (Bálint et al., 1999; Zhao et al., 2002; Roy et al., 2009; Pellati et al., 2010).

In the bicyclo[2.2.1]heptane (norbornane) skeleton of the title compound, (I), (Fig. 1), the two five-membered rings have envelope conformations, with atom C2 displaced by 0.365 (3) Å from the C2–C6 plane [the puckering parameters (Cremer & Pople, 1975) are Q2 = 0.573 (3) Å and [var phi]2 = 5.3 (3)°] and by 0.397 (3) Å from the C2/C3/C6/C9/C10 plane [the puckering parameters: Q2 = 0.615 (3) Å and [var phi]2 = 181.6 (3)°] and the six-membered ring (C3–C6/C9/C10) adopts a boat conformation by the puckering parameters QT = 0.970 (3) Å, θ = 92.03 (18)° and [var phi] = 357.34 (19) °.

In (I), the C—C single-bond lengths range from 1.491 (5) to 1.575 (4) Å, with a mean value of 1.535 (4) Å. In the bicyclo[2.2.1]heptane fragment, the angles between planes A (C3/C2/C6), B (C3–C6) and C (C3/C6/C9/C10) are as follows: A/B= 53.65 (19)°, A/C= 58.14 (18)° and B/C= 68.22 (13)°.

In the crystal, adjacent molecules of (I) are linked by intermolecular N—H···O and C—H···O hydrogen bonds (Table 1, Fig. 2).

Experimental

3-Bromocamphor-8-sulfonic acid ammonium salt was prepared by modification in the reported method (Smith et al., 2008). 3-Bromocamphor-8-sulfonic acid (1 g) was dissolved in 15 ml of ethanol and then 6 ml of NH3 solution were added. The mixture was stirred until a clear solution was observed (about 20 min). The solution was slowly concentrated on water bath to half the volume over a 2 h period. The concentrate was allowed to crystallize undisturbed for 48 h. The resulting colourless prisms of (I) were carefully separated by filteration and washed with three 0.5-ml portions of petroleum ether.

Refinement

In the ammonium ion, H atoms bound to N atoms were located in difference Fourier maps and their positional parameters were refined freely using a DFIX instruction [N—H = 0.93 (3) Å] in SHELXL97, with Uiso(H) = 1.5Ueq(N). H atoms bound to C atoms were placed in idealized positions and refined using a riding model with C—H = 0.96, 0.97 and 0.98 Å for CH3, CH2 and CH, respectively. Uiso(H) values were set at 1.5Ueq(C) for the methyl groups, and 1.2UeqUeq(C) for other H atoms.

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
The crystal packing of (I) viewed down the b-axis. The hydrogen-bonds are drawn as a dashed lines. H-atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

NH4+·C10H14BrO4SF(000) = 336
Mr = 328.22Dx = 1.677 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3356 reflections
a = 7.2449 (2) Åθ = 2.9–28.3°
b = 7.0049 (1) ŵ = 3.33 mm1
c = 13.2428 (3) ÅT = 296 K
β = 104.704 (1)°Prism, colourless
V = 650.06 (3) Å30.42 × 0.14 × 0.11 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer2775 independent reflections
Radiation source: sealed tube2586 reflections with I > 2σ(I)
graphiteRint = 0.0000
[var phi] and ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: part of the refinement model (ΔF) (XABS2; Parkin et al., 1995; quadratic fit to sin(θ)/λ - 18 parameters)h = −9→9
Tmin = 0.336, Tmax = 0.711k = −8→9
2775 measured reflectionsl = 0→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065w = 1/[σ2(Fo2) + (0.033P)2 + 0.1814P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2775 reflectionsΔρmax = 0.35 e Å3
168 parametersΔρmin = −0.47 e Å3
5 restraintsAbsolute structure: Flack (1983), 1155 Freidel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.021 (7)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.09450 (4)0.00017 (4)0.27520 (3)0.0440 (1)
S10.65799 (9)0.68509 (9)0.36429 (5)0.0242 (2)
O10.7216 (3)0.8793 (3)0.3541 (2)0.0434 (8)
O20.8199 (3)0.5560 (3)0.39714 (16)0.0332 (6)
O30.5283 (3)0.6697 (4)0.42972 (17)0.0448 (8)
O40.2268 (4)0.0517 (4)0.0568 (2)0.0596 (10)
C10.5311 (4)0.6201 (4)0.2339 (2)0.0277 (8)
C20.4754 (4)0.4086 (4)0.2154 (2)0.0213 (7)
C30.3597 (3)0.3263 (4)0.2899 (2)0.0223 (7)
C40.1802 (4)0.4500 (4)0.2647 (2)0.0272 (8)
C50.1351 (4)0.4758 (5)0.1462 (2)0.0352 (9)
C60.3067 (4)0.3804 (4)0.1148 (2)0.0310 (9)
C70.3318 (6)0.4411 (6)0.0112 (2)0.0519 (13)
C80.6514 (4)0.2949 (4)0.2067 (2)0.0316 (9)
C90.2719 (4)0.1690 (5)0.1248 (2)0.0342 (9)
C100.3097 (4)0.1283 (4)0.2418 (2)0.0298 (8)
N10.8032 (3)0.1906 (4)0.4952 (2)0.0311 (7)
H1A0.415500.696000.214500.0330*
H1B0.609200.654800.187100.0330*
H30.428800.325000.363800.0270*
H4A0.203900.572100.300100.0330*
H4B0.076000.386500.284800.0330*
H5A0.125900.610000.127700.0420*
H5B0.016200.413200.112100.0420*
H7A0.220800.40620−0.042500.0780*
H7B0.442000.37920−0.001500.0780*
H7C0.348800.577000.010800.0780*
H8A0.742700.292200.273400.0470*
H8B0.707500.354400.156300.0470*
H8C0.614200.166800.185000.0470*
H100.422400.046100.262900.0360*
H1N0.775 (5)0.096 (4)0.445 (2)0.0470*
H2N0.914 (4)0.170 (6)0.543 (2)0.0470*
H3N0.806 (5)0.305 (4)0.461 (3)0.0470*
H4N0.706 (4)0.195 (6)0.528 (3)0.0470*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0329 (2)0.0300 (2)0.0673 (2)−0.0085 (1)0.0093 (1)0.0087 (2)
S10.0199 (3)0.0209 (3)0.0303 (3)−0.0028 (2)0.0036 (2)−0.0024 (3)
O10.0492 (13)0.0217 (11)0.0526 (15)−0.0096 (9)0.0007 (11)−0.0030 (9)
O20.0246 (9)0.0298 (11)0.0393 (12)0.0024 (7)−0.0029 (8)−0.0036 (8)
O30.0304 (10)0.0674 (17)0.0391 (13)−0.0101 (11)0.0133 (9)−0.0175 (12)
O40.0552 (15)0.060 (2)0.0580 (16)−0.0138 (12)0.0042 (12)−0.0336 (13)
C10.0241 (13)0.0248 (14)0.0298 (15)−0.0018 (11)−0.0010 (11)0.0010 (11)
C20.0168 (12)0.0239 (13)0.0226 (13)−0.0016 (10)0.0041 (10)−0.0026 (10)
C30.0170 (11)0.0207 (12)0.0274 (14)−0.0020 (9)0.0022 (10)−0.0004 (10)
C40.0184 (11)0.0235 (15)0.0403 (16)0.0017 (9)0.0084 (10)−0.0020 (11)
C50.0222 (12)0.0368 (19)0.0406 (16)0.0024 (13)−0.0030 (11)0.0017 (14)
C60.0239 (13)0.0409 (17)0.0248 (15)−0.0040 (12)−0.0002 (11)−0.0024 (12)
C70.056 (2)0.070 (3)0.0247 (17)−0.0134 (18)0.0011 (15)0.0033 (15)
C80.0206 (13)0.0359 (16)0.0382 (17)−0.0007 (12)0.0074 (11)−0.0104 (13)
C90.0198 (12)0.0392 (17)0.0405 (16)−0.0051 (12)0.0018 (11)−0.0130 (14)
C100.0213 (12)0.0212 (13)0.0444 (17)−0.0006 (10)0.0039 (11)−0.0016 (11)
N10.0266 (12)0.0334 (13)0.0329 (13)0.0019 (11)0.0066 (10)0.0030 (11)

Geometric parameters (Å, °)

Br1—C101.945 (3)C6—C71.491 (4)
S1—O11.454 (2)C6—C91.514 (4)
S1—O21.457 (2)C9—C101.530 (4)
S1—O31.435 (2)C1—H1B0.9700
S1—C11.797 (3)C1—H1A0.9700
O4—C91.201 (4)C3—H30.9800
N1—H1N0.92 (3)C4—H4B0.9700
N1—H2N0.90 (3)C4—H4A0.9700
N1—H3N0.92 (3)C5—H5A0.9700
N1—H4N0.92 (3)C5—H5B0.9700
C1—C21.539 (4)C7—H7A0.9600
C2—C31.558 (4)C7—H7B0.9600
C2—C61.575 (4)C7—H7C0.9600
C2—C81.532 (4)C8—H8B0.9600
C3—C41.527 (4)C8—H8C0.9600
C3—C101.531 (4)C8—H8A0.9600
C4—C51.530 (4)C10—H100.9800
C5—C61.558 (4)
O1—S1—O2111.00 (13)C3—C10—C9102.4 (2)
O1—S1—O3113.46 (15)S1—C1—H1B108.00
O1—S1—C1104.17 (14)S1—C1—H1A108.00
O2—S1—O3111.96 (14)C2—C1—H1A108.00
O2—S1—C1107.84 (13)C2—C1—H1B108.00
O3—S1—C1107.92 (14)H1A—C1—H1B107.00
H3N—N1—H4N109 (3)C10—C3—H3114.00
H2N—N1—H4N109 (3)C4—C3—H3114.00
H1N—N1—H3N107 (3)C2—C3—H3115.00
H1N—N1—H4N108 (3)C5—C4—H4A111.00
H1N—N1—H2N113 (3)C3—C4—H4B111.00
H2N—N1—H3N111 (3)C3—C4—H4A111.00
S1—C1—C2116.52 (19)C5—C4—H4B111.00
C1—C2—C8108.8 (2)H4A—C4—H4B109.00
C1—C2—C6111.8 (2)H5A—C5—H5B109.00
C1—C2—C3114.6 (2)C4—C5—H5A111.00
C6—C2—C8110.7 (2)C4—C5—H5B111.00
C3—C2—C693.6 (2)C6—C5—H5A111.00
C3—C2—C8116.6 (2)C6—C5—H5B111.00
C4—C3—C10108.9 (2)H7B—C7—H7C109.00
C2—C3—C4102.5 (2)C6—C7—H7C109.00
C2—C3—C10100.4 (2)C6—C7—H7A110.00
C3—C4—C5103.9 (2)C6—C7—H7B109.00
C4—C5—C6104.2 (2)H7A—C7—H7B109.00
C7—C6—C9114.9 (3)H7A—C7—H7C109.00
C2—C6—C7119.5 (3)C2—C8—H8B109.00
C2—C6—C5102.8 (2)C2—C8—H8A109.00
C5—C6—C9103.6 (2)H8A—C8—H8C109.00
C2—C6—C999.2 (2)C2—C8—H8C109.00
C5—C6—C7114.5 (3)H8A—C8—H8B109.00
O4—C9—C6128.6 (3)H8B—C8—H8C110.00
O4—C9—C10125.2 (3)C9—C10—H10109.00
C6—C9—C10106.3 (2)Br1—C10—H10109.00
Br1—C10—C3116.24 (18)C3—C10—H10109.00
Br1—C10—C9111.62 (19)
O1—S1—C1—C2169.7 (2)C2—C3—C4—C539.1 (3)
O2—S1—C1—C251.7 (2)C10—C3—C4—C5−66.7 (3)
O3—S1—C1—C2−69.4 (3)C2—C3—C10—Br1−159.47 (17)
S1—C1—C2—C354.3 (3)C2—C3—C10—C9−37.5 (3)
S1—C1—C2—C6159.2 (2)C4—C3—C10—Br1−52.3 (3)
S1—C1—C2—C8−78.2 (3)C4—C3—C10—C969.7 (3)
C1—C2—C3—C461.2 (3)C3—C4—C5—C6−5.6 (3)
C1—C2—C3—C10173.5 (2)C4—C5—C6—C2−29.3 (3)
C6—C2—C3—C4−54.8 (2)C4—C5—C6—C7−160.5 (3)
C6—C2—C3—C1057.5 (2)C4—C5—C6—C973.6 (3)
C8—C2—C3—C4−170.0 (2)C2—C6—C9—O4−144.1 (3)
C8—C2—C3—C10−57.8 (3)C2—C6—C9—C1034.8 (3)
C1—C2—C6—C5−67.8 (3)C5—C6—C9—O4110.3 (4)
C1—C2—C6—C760.4 (4)C5—C6—C9—C10−70.9 (3)
C1—C2—C6—C9−174.0 (2)C7—C6—C9—O4−15.4 (5)
C3—C2—C6—C550.6 (2)C7—C6—C9—C10163.5 (3)
C3—C2—C6—C7178.7 (3)O4—C9—C10—Br1−54.7 (4)
C3—C2—C6—C9−55.7 (2)O4—C9—C10—C3−179.8 (3)
C8—C2—C6—C5170.7 (2)C6—C9—C10—Br1126.4 (2)
C8—C2—C6—C7−61.1 (4)C6—C9—C10—C31.3 (3)
C8—C2—C6—C964.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.92 (3)1.92 (3)2.835 (4)173 (3)
N1—H2N···O2ii0.90 (3)2.05 (3)2.899 (3)157 (3)
N1—H3N···O20.92 (3)1.97 (3)2.887 (3)176 (3)
N1—H4N···O3iii0.92 (3)1.93 (3)2.827 (3)167 (4)
C4—H4B···Br10.972.713.221 (3)113
C8—H8A···O20.962.443.104 (3)126
C10—H10···O1i0.982.493.451 (4)167

Symmetry codes: (i) x, y−1, z; (ii) −x+2, y−1/2, −z+1; (iii) −x+1, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5484).

References

  • Bálint, J., Egri, G., Fogassy, E., Böcskei, Z., Simon, K., Gajáry, A. & Friesz, A. (1999). Tetrahedron Asymmetry, 10, 1079–1087.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Ersanlı, C. C., Çoruh, U., Hökelek, T., Vázquez-López, E. M. & Daştan, A. (2005). Acta Cryst. E61, o263–o265.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jauch, J., Laderer, H. & Walz, L. (1992). Acta Cryst. C48, 1246–1248.
  • Nardelli, M. (1983). Comput. Chem.7, 95–98.
  • Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst.28, 53–56.
  • Pellati, F., Cannazza, G. & Benvenuti, S. (2010). J. Chromatogr. A, 1217, 3503–3510. [PubMed]
  • Roy, B. N., Singh, G. P., Srivastava, D., Jadhav, H. S., Saini, M. B. & Aher, P. (2009). Org. Process Res. Dev.13, 450–455.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, E. D., Vinson, N. A., Zhong, D., Berrang, B. D., Catanzaro, J. L., Thomas, J. B., Navarro, H. A., Gilmour, B. P., Deschamps, J. & Carroll, F. I. (2008). Bioorg. Med. Chem.16, 822–829. [PMC free article] [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Ustabaş, R., Çoruh, U., Yavuz, M., Salamci, E. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o1149–o1150.
  • Zhao, M. M., McNamara, J. M., Ho, G.-J., Emerson, K. M., Song, Z. J., Tschaen, D. M., Brands, K. M. J., Dolling, U.-H., Grabowski, E. J. J. & Reider, P. J. (2002). J. Org. Chem.67, 6743–6747. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography