PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1854–o1855.
Published online 2010 June 30. doi:  10.1107/S1600536810024645
PMCID: PMC3006720

3-(2-Amino­eth­yl)-2-[4-(trifluoro­meth­oxy)anilino]quinazolin-4(3H)-one

Abstract

In the title compound, C17H15F3N4O2, the dihedral angle between the trifluoro­meth­oxy-substituted benzene ring and the pyrimidinone ring is 45.1 (5)°, while that between the fused benzene ring and the pyrimidinone ring is 0.67 (1)°. Part of one of the benzene rings and its trifluoro­meth­oxy substituent are disordered over two positions of approximately equal occupancy (0.51:0.49). Inter­molecular N—H(...)O and N—H(...)N hydrogen bonds contribute to the stability of the crystal structure. A weak intra­molecular C—H(...)F contact is also found. In addition, π–π stacking inter­actions, with centroid–centroid distances in the range 3.673 (6)–3.780 (8) Å, and weak C—H(...)π inter­actions are also observed.

Related literature

For the biological activity of quinazoline-4(3H)-one derivatives, see: Pandeya et al.(1999 [triangle]); Shiba et al. (1997 [triangle]), Malamas & Millen (1991 [triangle]); Mannschreck et al. (1984 [triangle]); Kung et al. (1999 [triangle]); Bartroli et al. (1998 [triangle]); Palmer et al. (1997 [triangle]); Tsou et al. (2001 [triangle]); Matsuno et al. (2002 [triangle]). For the synthesis of the title compound, see: Yang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1854-scheme1.jpg

Experimental

Crystal data

  • C17H15F3N4O2
  • M r = 364.33
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1854-efi1.jpg
  • a = 11.9675 (13) Å
  • b = 12.9579 (13) Å
  • c = 21.280 (2) Å
  • V = 3300.0 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 298 K
  • 0.23 × 0.15 × 0.11 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.973, T max = 0.987
  • 15599 measured reflections
  • 3076 independent reflections
  • 2573 reflections with I > 2σ(I)
  • R int = 0.083

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.164
  • S = 1.12
  • 3076 reflections
  • 311 parameters
  • 19 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024645/sj5026sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024645/sj5026Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Natural Science Foundation of Guizhou Educational Committee (grant No.20090079) for financial support, and acknowledge the Sophisticated Analytical Instrument Facility, Central China Normal University, Whuhan, for the data collection.

supplementary crystallographic information

Comment

Quinazoline-4(3H)-one derivatives have numerous biological properties. Some of these activities include antimicrobial (Pandeya et al., 1999 and Shiba et al., 1997), antidiabetic (Malamas & Millen, 1991), anticonvulsant (Mannschreck et al., 1984), antibacterial (Kung et al., 1999), antifungal (Bartroli et al., 1998), protein tyrosine kinase inhibitors (Palmer et al., 1997), EGFR inhibitors (Tsou et al.,2001) and PDGFR phosphorylation inhibitors (Matsuno et al., 2002). We have recently focused on the synthesis of heterocyclic compounds using an aza-Wittig reaction. We have reported the synthesis of the title compound (Yang et al., 2008). We present here the crystal structure of the title compound, (I) (Fig. 1), which can be used as a precursor for obtaining bioactive molecules.

In the crystal structure, the fused benzene ring and the pyrimidinone ring are not completely co-planar, but are inclined at 0.67 (1) °. Significant and intermolecular N—H···O and N—H···N hydrogen bonds contribute strongly to the stability of the structure (Fig. 2). An intramolecular C—H···F hydrogen bond is also found. (Table 1). The crystal structure (Fig. 2) is also stabilized by weak intermolecular C—H···π hydrogen bonds (Table 1) and π— π stacking interactions with centroid-centroid separations of 3.673 (6), 3.779 (8), 3.674 (6) and 3.780 (8) Å for Cg1···Cg3i, Cg1···Cg4i, Cg3···Cg1ii and Cg4···Cg1ii, respectively, where Cg1, Cg3 and Cg4 are the centroids of the N1/C7/C1—C2/N2/C8, C11—C16 and C11—C13/C14'-C16' rings, respectively [symmetry code: (i) 3/2-X, 1/2+Y, Z, (ii) 3/2-X, -1/2+Y, Z,].

Experimental

The title compound was prepared by a literature method (Yang et al., 2008). Single crystals suitable for X-ray diffraction were obtained from a methanol-dichloromethane (1:1 v/v) solution at room temperature.

Refinement

H atoms bonded to C were placed in calculated positions, with C—H distances of 0.97 and 0.93Å for H atoms bonded to sp3 and sp2 C atoms, respectively. They were refined using a riding model, with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(methyl C). The H atoms bound to N were refined with distance restraints N—H = 0.86 (2)Å and with Uiso(H) = 1.2Ueq (N). The C14···C16 atoms of the trifluoromethoxy-substituted benzene ring and all atoms of the trifluoromethoxy substituent were disordered over two sites. The site occupancies refined to 0.51 and 0.49 and were fixed at these values in the final refinement cycles.

Figures

Fig. 1.
View of the molecular structure of (I), showing the atom labelling schemeand with displacement ellipsoids drawn at the 50% probability level. Both disorder components are shown with bonds involving the minor disorder component drawn as dashed lines.
Fig. 2.
A partial view of the crystal packing of (I), showing the formation of N—H···N and N—H···O hydrogen-bonds as dashed lines.

Crystal data

C17H15F3N4O2F(000) = 1504
Mr = 364.33Dx = 1.467 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 4600 reflections
a = 11.9675 (13) Åθ = 2.5–23.5°
b = 12.9579 (13) ŵ = 0.12 mm1
c = 21.280 (2) ÅT = 298 K
V = 3300.0 (6) Å3Block, colorless
Z = 80.23 × 0.15 × 0.11 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer3076 independent reflections
Radiation source: fine-focus sealed tube2573 reflections with I > 2σ(I)
graphiteRint = 0.083
[var phi] and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −10→14
Tmin = 0.973, Tmax = 0.987k = −15→14
15599 measured reflectionsl = −25→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.12w = 1/[σ2(Fo2) + (0.0809P)2 + 0.8235P] where P = (Fo2 + 2Fc2)/3
3076 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.39 e Å3
19 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.9187 (2)1.31297 (18)0.55231 (11)0.0445 (6)
C20.9408 (2)1.24194 (18)0.60015 (11)0.0443 (6)
C30.9930 (2)1.2767 (2)0.65508 (12)0.0556 (7)
H31.00931.23040.68710.067*
C41.0200 (2)1.3792 (2)0.66172 (14)0.0623 (7)
H41.05461.40140.69840.075*
C50.9967 (2)1.4498 (2)0.61481 (14)0.0631 (8)
H51.01561.51890.61990.076*
C60.9457 (2)1.41721 (19)0.56101 (14)0.0549 (7)
H60.92861.46480.52970.066*
C70.8649 (2)1.27789 (18)0.49482 (11)0.0453 (6)
C80.8673 (2)1.10775 (18)0.54329 (10)0.0425 (6)
C90.7649 (2)1.1385 (2)0.44173 (12)0.0522 (6)
H9A0.72571.19790.42490.063*
H9B0.70921.09150.45850.063*
C100.8258 (2)1.0850 (2)0.38838 (11)0.0555 (7)
H10A0.77951.08610.35100.067*
H10B0.89431.12200.37910.067*
C110.8519 (2)0.92710 (18)0.57795 (12)0.0463 (6)
C120.8785 (2)0.82950 (18)0.55666 (12)0.0463 (6)
H120.89700.82000.51460.056*
C130.8781 (2)0.74562 (19)0.59680 (13)0.0523 (7)
H130.89870.68080.58210.063*
C140.8473 (13)0.7581 (8)0.6583 (5)0.065 (5)0.51
C150.812 (2)0.855 (2)0.6764 (13)0.071 (6)0.51
H150.78050.86160.71610.085*0.51
C160.8208 (17)0.9417 (9)0.6397 (8)0.050 (3)0.51
H160.80651.00720.65580.060*0.51
C170.8238 (9)0.6670 (8)0.7538 (5)0.0637 (12)0.51
O20.8387 (12)0.6644 (9)0.6922 (5)0.089 (4)0.51
F10.8935 (8)0.7216 (9)0.7869 (6)0.119 (4)0.51
F20.7234 (6)0.7043 (7)0.7658 (5)0.122 (4)0.51
F30.8159 (10)0.5681 (5)0.7691 (4)0.082 (2)0.51
C14'0.8582 (12)0.7631 (9)0.6591 (6)0.063 (5)0.49
C15'0.842 (3)0.8590 (19)0.6855 (14)0.071 (6)0.49
H15'0.83740.87000.72860.085*0.49
C16'0.834 (3)0.9368 (16)0.6418 (13)0.101 (8)0.49
H16'0.81481.00200.65660.121*0.49
C17'0.8114 (10)0.6564 (9)0.7475 (6)0.0637 (12)0.49
O2'0.8747 (11)0.6749 (8)0.6976 (5)0.070 (3)0.49
F1'0.8435 (10)0.7198 (6)0.7928 (4)0.105 (4)0.49
F2'0.7057 (9)0.6717 (8)0.7373 (5)0.122 (4)0.49
F3'0.8383 (15)0.5654 (9)0.7708 (7)0.145 (6)0.49
N10.83729 (16)1.17338 (14)0.49385 (9)0.0428 (5)
N20.91631 (18)1.13823 (14)0.59417 (9)0.0469 (5)
N30.8525 (2)0.97796 (19)0.40455 (11)0.0605 (6)
H3A0.7992 (19)0.936 (2)0.3949 (14)0.073*
H3B0.9115 (17)0.952 (2)0.3871 (14)0.073*
N40.8435 (2)1.00667 (16)0.53333 (9)0.0510 (6)
H4A0.843 (2)0.988 (2)0.4945 (6)0.061*
O10.84285 (17)1.33377 (14)0.45034 (9)0.0620 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0419 (13)0.0403 (12)0.0513 (13)0.0033 (10)0.0089 (11)0.0027 (10)
C20.0470 (13)0.0410 (13)0.0449 (13)−0.0008 (10)0.0068 (10)0.0003 (10)
C30.0640 (17)0.0577 (16)0.0452 (13)−0.0084 (13)0.0010 (12)−0.0015 (11)
C40.0643 (18)0.0622 (18)0.0604 (16)−0.0108 (14)0.0069 (14)−0.0154 (14)
C50.0644 (18)0.0428 (14)0.082 (2)−0.0098 (12)0.0113 (16)−0.0141 (13)
C60.0550 (15)0.0397 (13)0.0702 (17)0.0013 (11)0.0113 (13)0.0066 (12)
C70.0455 (13)0.0415 (13)0.0490 (13)0.0078 (10)0.0076 (11)0.0077 (10)
C80.0465 (13)0.0402 (12)0.0410 (12)0.0001 (10)0.0031 (10)0.0038 (10)
C90.0521 (15)0.0527 (15)0.0519 (13)0.0026 (11)−0.0113 (12)0.0054 (11)
C100.0634 (16)0.0601 (16)0.0431 (13)−0.0049 (13)−0.0077 (12)0.0038 (12)
C110.0535 (14)0.0399 (13)0.0455 (13)−0.0049 (10)−0.0006 (11)0.0033 (10)
C120.0491 (14)0.0431 (13)0.0466 (13)−0.0014 (10)−0.0007 (11)−0.0015 (10)
C130.0601 (16)0.0386 (13)0.0583 (16)0.0076 (11)−0.0039 (13)−0.0029 (11)
C140.121 (10)0.032 (7)0.043 (7)−0.017 (6)−0.026 (6)−0.002 (4)
C150.118 (13)0.063 (7)0.033 (7)−0.014 (7)0.003 (6)−0.004 (4)
C160.097 (7)0.014 (4)0.040 (6)−0.001 (4)0.011 (5)0.001 (4)
C170.084 (3)0.054 (2)0.053 (2)0.002 (2)−0.004 (2)0.0146 (19)
O20.167 (12)0.046 (3)0.055 (3)−0.033 (5)−0.014 (5)0.013 (2)
F10.111 (6)0.144 (6)0.101 (6)0.025 (4)−0.036 (4)−0.008 (4)
F20.084 (5)0.107 (6)0.177 (9)0.021 (4)0.060 (6)0.059 (6)
F30.132 (5)0.045 (3)0.070 (4)0.001 (3)0.018 (3)0.038 (3)
C14'0.071 (6)0.050 (9)0.069 (9)0.024 (5)0.032 (6)0.027 (6)
C15'0.139 (17)0.036 (6)0.037 (8)0.003 (8)0.006 (9)0.006 (5)
C16'0.164 (19)0.075 (11)0.064 (12)0.026 (9)0.035 (11)0.001 (8)
C17'0.084 (3)0.054 (2)0.053 (2)0.002 (2)−0.004 (2)0.0146 (19)
O2'0.098 (6)0.038 (4)0.076 (5)0.016 (4)0.022 (5)0.011 (3)
F1'0.197 (12)0.074 (4)0.045 (3)0.000 (5)−0.031 (5)−0.014 (2)
F2'0.107 (5)0.116 (7)0.144 (7)−0.005 (4)−0.023 (5)0.038 (5)
F3'0.186 (11)0.112 (8)0.137 (9)0.059 (6)−0.005 (7)0.054 (6)
N10.0465 (11)0.0404 (11)0.0416 (10)0.0029 (8)−0.0018 (8)0.0038 (8)
N20.0591 (13)0.0395 (11)0.0421 (11)−0.0024 (9)−0.0030 (9)0.0057 (8)
N30.0730 (17)0.0565 (15)0.0518 (13)0.0004 (12)−0.0036 (12)−0.0049 (11)
N40.0754 (15)0.0385 (11)0.0389 (11)−0.0060 (10)−0.0015 (10)0.0022 (9)
O10.0760 (13)0.0527 (11)0.0573 (11)0.0087 (9)−0.0023 (9)0.0205 (9)

Geometric parameters (Å, °)

C1—C21.398 (3)C11—N41.405 (3)
C1—C61.401 (3)C12—C131.382 (3)
C1—C71.455 (4)C12—H120.9300
C2—N21.381 (3)C13—C14'1.366 (14)
C2—C31.399 (3)C13—C141.369 (13)
C3—C41.374 (4)C13—H130.9300
C3—H30.9300C14—C151.38 (3)
C4—C51.382 (4)C14—O21.416 (9)
C4—H40.9300C15—C161.38 (4)
C5—C61.364 (4)C15—H150.9300
C5—H50.9300C16—H160.9300
C6—H60.9300C17—F11.302 (9)
C7—O11.221 (3)C17—F21.321 (9)
C7—N11.394 (3)C17—O21.324 (9)
C8—N21.293 (3)C17—F31.326 (8)
C8—N41.357 (3)C14'—C15'1.38 (3)
C8—N11.400 (3)C14'—O2'1.421 (8)
C9—N11.478 (3)C15'—C16'1.37 (4)
C9—C101.517 (4)C15'—H15'0.9300
C9—H9A0.9700C16'—H16'0.9300
C9—H9B0.9700C17'—F2'1.299 (9)
C10—N31.464 (4)C17'—F3'1.320 (9)
C10—H10A0.9700C17'—F1'1.325 (9)
C10—H10B0.9700C17'—O2'1.325 (9)
C11—C161.379 (18)N3—H3A0.862 (11)
C11—C121.381 (3)N3—H3B0.864 (11)
C11—C16'1.38 (3)N4—H4A0.863 (11)
C2—C1—C6119.7 (2)C14—C13—C12119.9 (5)
C2—C1—C7119.4 (2)C14'—C13—H13121.6
C6—C1—C7120.9 (2)C14—C13—H13120.1
N2—C2—C1122.2 (2)C12—C13—H13120.1
N2—C2—C3119.0 (2)C13—C14—C15117.3 (15)
C1—C2—C3118.7 (2)C13—C14—O2113.9 (9)
C4—C3—C2120.1 (3)C15—C14—O2127.9 (17)
C4—C3—H3119.9C14—C15—C16124 (2)
C2—C3—H3119.9C14—C15—H15117.9
C3—C4—C5121.2 (3)C16—C15—H15117.9
C3—C4—H4119.4C15—C16—C11116.7 (16)
C5—C4—H4119.4C15—C16—H16121.7
C6—C5—C4119.4 (2)C11—C16—H16121.7
C6—C5—H5120.3F1—C17—F2106.2 (9)
C4—C5—H5120.3F1—C17—O2117.7 (11)
C5—C6—C1120.8 (3)F2—C17—O2108.9 (11)
C5—C6—H6119.6F1—C17—F3116.0 (10)
C1—C6—H6119.6F2—C17—F3104.0 (9)
O1—C7—N1120.9 (2)O2—C17—F3103.2 (9)
O1—C7—C1124.2 (2)C17—O2—C14119.5 (11)
N1—C7—C1114.88 (19)C13—C14'—C15'124.8 (15)
N2—C8—N4121.4 (2)C13—C14'—O2'113.7 (10)
N2—C8—N1124.1 (2)C15'—C14'—O2'120.6 (16)
N4—C8—N1114.5 (2)C16'—C15'—C14'113 (2)
N1—C9—C10114.8 (2)C16'—C15'—H15'123.3
N1—C9—H9A108.6C14'—C15'—H15'123.3
C10—C9—H9A108.6C15'—C16'—C11126 (2)
N1—C9—H9B108.6C15'—C16'—H16'117.0
C10—C9—H9B108.6C11—C16'—H16'117.0
H9A—C9—H9B107.5F2'—C17'—F3'115.9 (11)
N3—C10—C9111.2 (2)F2'—C17'—F1'108.1 (9)
N3—C10—H10A109.4F3'—C17'—F1'102.1 (10)
C9—C10—H10A109.4F2'—C17'—O2'113.3 (11)
N3—C10—H10B109.4F3'—C17'—O2'108.8 (11)
C9—C10—H10B109.4F1'—C17'—O2'107.8 (10)
H10A—C10—H10B108.0C17'—O2'—C14'121.8 (11)
C16—C11—C12120.0 (6)C7—N1—C8121.2 (2)
C16—C11—C16'7(2)C7—N1—C9116.56 (19)
C12—C11—C16'116.2 (10)C8—N1—C9121.9 (2)
C16—C11—N4121.6 (6)C8—N2—C2118.07 (19)
C12—C11—N4117.8 (2)C10—N3—H3A112 (2)
C16'—C11—N4125.9 (10)C10—N3—H3B116 (2)
C11—C12—C13121.1 (2)H3A—N3—H3B105 (3)
C11—C12—H12119.4C8—N4—C11126.0 (2)
C13—C12—H12119.4C8—N4—H4A115.3 (19)
C14'—C13—C146.1 (12)C11—N4—H4A115.9 (19)
C14'—C13—C12118.0 (5)
C6—C1—C2—N2−179.8 (2)C15—C14—O2—C17−20 (2)
C7—C1—C2—N21.9 (3)C14—C13—C14'—C15'−112 (10)
C6—C1—C2—C3−2.0 (3)C12—C13—C14'—C15'−2(2)
C7—C1—C2—C3179.8 (2)C14—C13—C14'—O2'79 (9)
N2—C2—C3—C4178.9 (2)C12—C13—C14'—O2'−171.7 (9)
C1—C2—C3—C41.0 (4)C13—C14'—C15'—C16'8(3)
C2—C3—C4—C50.0 (4)O2'—C14'—C15'—C16'176 (2)
C3—C4—C5—C60.2 (4)C14'—C15'—C16'—C11−7(4)
C4—C5—C6—C1−1.2 (4)C16—C11—C16'—C15'124 (12)
C2—C1—C6—C52.2 (4)C12—C11—C16'—C15'1(3)
C7—C1—C6—C5−179.6 (2)N4—C11—C16'—C15'180 (2)
C2—C1—C7—O1−179.5 (2)F2'—C17'—O2'—C14'43.8 (16)
C6—C1—C7—O12.3 (4)F3'—C17'—O2'—C14'174.2 (14)
C2—C1—C7—N11.6 (3)F1'—C17'—O2'—C14'−75.8 (15)
C6—C1—C7—N1−176.6 (2)C13—C14'—O2'—C17'−144.6 (11)
N1—C9—C10—N378.7 (3)C15'—C14'—O2'—C17'45 (2)
C16—C11—C12—C13−2.0 (10)O1—C7—N1—C8176.8 (2)
C16'—C11—C12—C135.1 (15)C1—C7—N1—C8−4.3 (3)
N4—C11—C12—C13−173.9 (2)O1—C7—N1—C9−9.6 (3)
C11—C12—C13—C14'−4.5 (8)C1—C7—N1—C9169.3 (2)
C11—C12—C13—C142.2 (8)N2—C8—N1—C73.8 (4)
C14'—C13—C14—C1577 (9)N4—C8—N1—C7−174.5 (2)
C12—C13—C14—C153.3 (19)N2—C8—N1—C9−169.5 (2)
C14'—C13—C14—O2−113 (9)N4—C8—N1—C912.2 (3)
C12—C13—C14—O2173.4 (8)C10—C9—N1—C7100.9 (3)
C13—C14—C15—C16−10 (3)C10—C9—N1—C8−85.5 (3)
O2—C14—C15—C16−178.0 (19)N4—C8—N2—C2178.1 (2)
C14—C15—C16—C1110 (3)N1—C8—N2—C2−0.1 (4)
C12—C11—C16—C15−4(2)C1—C2—N2—C8−2.7 (3)
C16'—C11—C16—C15−64 (10)C3—C2—N2—C8179.4 (2)
N4—C11—C16—C15168.0 (16)N2—C8—N4—C1110.1 (4)
F1—C17—O2—C14−52.8 (17)N1—C8—N4—C11−171.5 (2)
F2—C17—O2—C1468.0 (15)C16—C11—N4—C839.3 (10)
F3—C17—O2—C14178.0 (13)C12—C11—N4—C8−148.9 (2)
C13—C14—O2—C17171.3 (11)C16'—C11—N4—C832.2 (16)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C7/C1/C2/N2/C8 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3B···N2i0.86 (1)2.40 (2)3.150 (3)145 (3)
N3—H3A···O1ii0.86 (1)2.46 (2)3.147 (3)137 (3)
C15—H15···F20.932.402.93 (3)116
C12—H12···Cg1i0.932.883.560 (3)131

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+3/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5026).

References

  • Bartroli, J., Turmo, E., Alguero, M., Boncompte, E., Vericat, M. L., Conte, L., Ramis, J., Merlos, M., Garcia-Rafanell, J. & Forn, J. (1998). J. Med. Chem.41, 1869–1882. [PubMed]
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kung, P. P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. & Decker, D. J. (1999). J. Med. Chem.42, 4705–4713. [PubMed]
  • Malamas, M. S. & Millen, J. (1991). J. Med. Chem.34, 1492–1503. [PubMed]
  • Mannschreck, A., Koller, H., Stuhler, G., Davis, M. A. & Traber, J. (1984). Eur. J. Med. Chem.19, 381–383.
  • Matsuno, K., Ichimura, M., Nakajima, T., Tahara, K., Fujiwara, S., Kase, H., Ushiki, J., Giese, N. A., Pandey, A., Scarborough, R. M., Lokker, N. A., Yu, J. C., Irie, J., Tsukuda, E., Ide, S., Oda, S. & Nomoto, Y. (2002). J. Med. Chem.45, 3057–3066. [PubMed]
  • Palmer, B. D., Trumpp-Kallmeyer, S., Fry, D. W., Nelson, J. M., Showalter, H. D. H. & Denny, W. A. (1997). J. Med. Chem.40, 1519–1529. [PubMed]
  • Pandeya, S. N., Sriram, D., Nath, G. & Cler, E. De. (1999). Pharm. Acta Helv.74, 11–17. [PubMed]
  • Sheldrick, G. M. (2001). SADABS University of Goöttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shiba, S. A., El-Khamry, A. A., Shaban, M. & Atia, K. S. (1997). Pharmazie, 52, 189–194. [PubMed]
  • Tsou, H. R., Mamuya, N., Johnson, B. D., Reich, M. F. G., uber, B. C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F. E., Greenberger, L. M., Wang, Y. F. & Wissner, A. (2001). J. Med. Chem.44, 2719–2734. [PubMed]
  • Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem.45, 1365–1369.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography