PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1713.
Published online 2010 June 18. doi:  10.1107/S1600536810022671
PMCID: PMC3006716

2-(2,3,4,9-Tetra­hydro-1H-carbazol-1-ylidene)propane­dinitrile

Abstract

In the title mol­ecule, C15H11N3, the dihedral angle between the benzene ring and the fused pyrrole ring is 1.07 (5)°. The cyclo­hexene ring adopts an envelope conformation: the dicyano­methyl­ene group at position 1 has a coplanar orientation. An intra­molecular N—H(...)N hydrogen bond generates an S(7) ring motif. Inter­molecular N—H(...)N hydrogen bonds form an R 2 2(14) ring in the crystal. A C—H(...)π inter­action involving the benzene ring is also found in the structure.

Related literature

For naturally occurring carbazole alkaloids see: Scott et al. (2006 [triangle]). For the biological activity of carbazole alkaloids see: Ramsewak et al.(1999 [triangle]); Tachibana et al. (2001 [triangle]); Nakahara et al. (2002 [triangle]). For the crystal structures of substituted carbazole derivatives see: Gunaseelan et al. (2007a [triangle],b [triangle], 2009 [triangle]); Thiruvalluvar et al. (2007 [triangle]); Sridharan et al. (2008 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1713-scheme1.jpg

Experimental

Crystal data

  • C15H11N3
  • M r = 233.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1713-efi2.jpg
  • a = 8.4794 (3) Å
  • b = 10.5542 (4) Å
  • c = 13.0575 (5) Å
  • β = 97.366 (3)°
  • V = 1158.92 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 110 K
  • 0.53 × 0.38 × 0.31 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.939, T max = 1.000
  • 8311 measured reflections
  • 3822 independent reflections
  • 2854 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.115
  • S = 0.98
  • 3822 reflections
  • 167 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810022671/dn2576sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022671/dn2576Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Tetrahydrocarbazolones have been used extensively as advanced intermediates in synthetic efforts toward a number of naturally occurring carbazole alkaloids (Scott et al., 2006). Carbazole alkaloids possess various biological activities such as anti-tumor, anti-oxidative, anti-mutagenic, and anti-inflammatory activities (Ramsewak et al., 1999; Tachibana et al., 2001; Nakahara et al., 2002). Since it is known that carbazole alkaloids possess anti-tumor activity, the identification of alkaloids that are cytotoxic against tumor cells could lead to the development of a chemopreventive agent for tumor treatment.

Gunaseelan et al. (2007a,b), Gunaseelan et al. (2009), Thiruvalluvar et al. (2007) and Sridharan et al. (2008) have reported the crystal structures of substituted carbazole derivatives, in which the carbazole units are not planar. In the title molecule (Scheme I, Fig. 1), C15H11N3, the carbazole unit is not planar. The dihedral angle between the benzene ring and the fused pyrrole ring is 1.07 (5)°. The r.m.s. deviation of a mean plane fitted through all non hydrogen atoms excluding C3 of the carbazole unit is 0.0263 Å; C3 deviates from this plane by 0.576 (1) Å. The cyclohexene ring adopts an envelope conformation. The puckering parameters (Cremer & Pople, 1975) are q2=0.3482 (10) Å, q3=-0.2564 (10) Å, Q=0.4324 (10) Å, θ=126.37 (13)° and [var phi]=293.46 (16)°. The dicyanomethylene group at position 1 has a coplanar orientation. An intramolecular hydrogen contact N9—H9···N13 generates a ring of graph-set motif S(7) (Bernstein et al., 1995)(Table 1, Fig. 1). Intermolecular N9—H9···N13 hydrogen bonds form a R22(14)(Bernstein et al., 1995) ring in the crystal structure (Table 1, Fig. 2). A C2—H2A···π interaction involving the benzene (C4B,C5—C8,C8A) ring is also found in the structure(Table 1).

Experimental

A mixture of 2,3,4,9-tetrahydro-1H-carbazol-1-one (0.199 g, 0.001 mol), malononitrile (0.066 g, 0.001 mol), ammonium acetate (0.092 g, 0.0012 mol) and few drops of acetic acid in 5 ml of toluene was refluxed at 383 K for 6 h. On cooling, the precipitate that formed was filtered off, washed with petroleum ether and dried. The crude product thus obtained was purified by column chromatography over silica gel using petroleum ether: ethyl acetate (99:1, v/v) to yield the titled product (0.173 g, 74%). This was recrystallized from ethyl acetate.

Refinement

The H atom bonded to N9 was located in a difference Fourier map and refined freely. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(parent atom).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
Fig. 2.
A part of the crystal structure of (I), viewed along c axis, showing the formation of a R22(14) ring.

Crystal data

C15H11N3F(000) = 488
Mr = 233.27Dx = 1.337 Mg m3
Monoclinic, P21/nMelting point: 470 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.4794 (3) ÅCell parameters from 4130 reflections
b = 10.5542 (4) Åθ = 4.7–32.6°
c = 13.0575 (5) ŵ = 0.08 mm1
β = 97.366 (3)°T = 110 K
V = 1158.92 (8) Å3Prism, pale-yellow
Z = 40.53 × 0.38 × 0.31 mm

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer3822 independent reflections
Radiation source: Enhance (Mo) X-ray Source2854 reflections with I > 2σ(I)
graphiteRint = 0.021
Detector resolution: 10.5081 pixels mm-1θmax = 32.6°, θmin = 4.7°
ω scansh = −12→12
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −15→15
Tmin = 0.939, Tmax = 1.000l = −19→16
8311 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.98w = 1/[σ2(Fo2) + (0.0736P)2] where P = (Fo2 + 2Fc2)/3
3822 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N90.20402 (9)0.52842 (7)0.07142 (6)0.0170 (2)
N120.27359 (12)0.01410 (9)−0.03875 (8)0.0333 (3)
N130.42310 (11)0.40137 (9)−0.08917 (7)0.0351 (3)
C10.14687 (10)0.29269 (9)0.07178 (6)0.0152 (2)
C20.05668 (11)0.19571 (9)0.12634 (7)0.0194 (2)
C3−0.09527 (10)0.24541 (10)0.16360 (7)0.0219 (3)
C4−0.06619 (11)0.36476 (10)0.22890 (7)0.0212 (3)
C4A0.03186 (10)0.45589 (9)0.17735 (6)0.0166 (2)
C4B0.04943 (10)0.58875 (9)0.19177 (7)0.0179 (2)
C5−0.01638 (11)0.67652 (10)0.25578 (8)0.0238 (3)
C60.02314 (12)0.80254 (10)0.24880 (8)0.0275 (3)
C70.12868 (12)0.84267 (10)0.18004 (8)0.0264 (3)
C80.19716 (11)0.75911 (9)0.11745 (7)0.0221 (2)
C8A0.15696 (10)0.63122 (9)0.12427 (7)0.0173 (2)
C9A0.12894 (10)0.42084 (8)0.10364 (6)0.0151 (2)
C110.24383 (10)0.25207 (9)0.00157 (7)0.0178 (2)
C120.25910 (11)0.12004 (10)−0.02084 (7)0.0222 (3)
C130.34255 (11)0.33496 (10)−0.04916 (7)0.0226 (2)
H2A0.127680.162850.186580.0232*
H2B0.028720.123770.078800.0232*
H3A−0.174570.264020.103010.0262*
H3B−0.140070.178880.204850.0262*
H4A−0.169180.404350.238350.0255*
H4B−0.010560.342460.297870.0255*
H5−0.086400.649360.302660.0286*
H6−0.021150.863130.290740.0330*
H70.153430.930250.176730.0317*
H80.268480.787270.071760.0265*
H90.2890 (16)0.5317 (13)0.0351 (11)0.043 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N90.0188 (3)0.0158 (4)0.0172 (3)−0.0019 (3)0.0052 (3)−0.0004 (3)
N120.0414 (5)0.0225 (4)0.0389 (5)−0.0017 (4)0.0158 (4)−0.0055 (4)
N130.0396 (5)0.0323 (5)0.0383 (5)−0.0131 (4)0.0240 (4)−0.0134 (4)
C10.0148 (4)0.0166 (4)0.0140 (4)−0.0015 (3)0.0007 (3)0.0009 (3)
C20.0228 (4)0.0177 (4)0.0181 (4)−0.0047 (3)0.0046 (3)0.0012 (4)
C30.0198 (4)0.0262 (5)0.0205 (4)−0.0062 (4)0.0057 (3)0.0006 (4)
C40.0185 (4)0.0271 (5)0.0194 (4)−0.0021 (4)0.0074 (3)−0.0002 (4)
C4A0.0144 (4)0.0204 (4)0.0149 (4)0.0006 (3)0.0018 (3)0.0004 (3)
C4B0.0149 (4)0.0208 (4)0.0176 (4)0.0022 (3)0.0002 (3)−0.0015 (4)
C50.0179 (4)0.0290 (5)0.0240 (4)0.0059 (4)0.0007 (3)−0.0076 (4)
C60.0250 (5)0.0263 (5)0.0293 (5)0.0096 (4)−0.0040 (4)−0.0107 (4)
C70.0292 (5)0.0179 (4)0.0290 (5)0.0037 (4)−0.0081 (4)−0.0037 (4)
C80.0255 (4)0.0175 (4)0.0218 (4)−0.0003 (4)−0.0028 (3)0.0007 (4)
C8A0.0181 (4)0.0169 (4)0.0160 (4)0.0014 (3)−0.0013 (3)−0.0009 (3)
C9A0.0153 (4)0.0157 (4)0.0143 (4)−0.0015 (3)0.0023 (3)0.0013 (3)
C110.0189 (4)0.0166 (4)0.0183 (4)−0.0025 (3)0.0044 (3)−0.0026 (3)
C120.0238 (4)0.0220 (5)0.0219 (4)−0.0014 (4)0.0067 (3)−0.0026 (4)
C130.0236 (4)0.0221 (4)0.0238 (4)−0.0037 (4)0.0097 (4)−0.0081 (4)

Geometric parameters (Å, °)

N9—C8A1.3723 (12)C6—C71.4115 (15)
N9—C9A1.3929 (11)C7—C81.3801 (14)
N12—C121.1521 (14)C8—C8A1.3978 (13)
N13—C131.1499 (14)C11—C121.4331 (14)
N9—H90.913 (14)C11—C131.4307 (13)
C1—C21.5099 (13)C2—H2A0.9900
C1—C111.3760 (12)C2—H2B0.9900
C1—C9A1.4289 (13)C3—H3A0.9900
C2—C31.5273 (13)C3—H3B0.9900
C3—C41.5234 (14)C4—H4A0.9900
C4—C4A1.4876 (13)C4—H4B0.9900
C4A—C9A1.3943 (12)C5—H50.9500
C4A—C4B1.4201 (13)C6—H60.9500
C4B—C51.4099 (14)C7—H70.9500
C4B—C8A1.4196 (13)C8—H80.9500
C5—C61.3775 (15)
N9···N133.2626 (12)C8A···H2Avii2.9000
N9···C132.9158 (13)C9A···H3A3.0600
N9···N13i3.2267 (12)C11···H93.001 (14)
N9···C9Aii3.4392 (11)C12···H2A3.0900
N12···C3iii3.4371 (14)C12···H2B2.4800
N13···N93.2626 (12)C13···H92.420 (14)
N13···N9i3.2267 (12)H2A···C123.0900
N13···N13i3.2679 (13)H2A···H7iv2.4700
N12···H2Biii2.9400H2A···C4Bvi3.0800
N12···H8iv2.8000H2A···C8vi2.9700
N13···H92.508 (14)H2A···C8Avi2.9000
N13···H9i2.553 (14)H2B···C122.4800
N13···H3Bv2.8100H2B···H7iv2.5600
C1···C6vi3.4129 (13)H2B···N12iii2.9400
C1···C7vi3.5806 (13)H3A···C9A3.0600
C1···C8Aii3.4849 (12)H3A···C8ii2.8700
C3···N12iii3.4371 (14)H3A···H8ii2.3800
C4A···C7vi3.4360 (13)H3B···C5viii3.0200
C6···C9Avii3.5380 (13)H3B···H5viii2.3300
C6···C1vii3.4129 (13)H3B···N13x2.8100
C7···C9Avii3.3756 (13)H4B···C8vi2.8800
C7···C1vii3.5806 (13)H4B···H8vi2.5600
C7···C4Avii3.4360 (13)H5···C3ix2.9700
C8A···C1ii3.4849 (12)H5···H3Bix2.3300
C9A···N9ii3.4392 (11)H7···C2xi2.9700
C9A···C6vi3.5380 (13)H7···H2Axi2.4700
C9A···C7vi3.3756 (13)H7···H2Bxi2.5600
C13···N92.9158 (13)H7···C4Avii3.0900
C2···H7iv2.9700H8···N12xi2.8000
C3···H5viii2.9700H8···H4Bvii2.5600
C4A···H7vi3.0900H8···H3Aii2.3800
C4B···H2Avii3.0800H9···N132.508 (14)
C5···H3Bix3.0200H9···C113.001 (14)
C8···H3Aii2.8700H9···C132.420 (14)
C8···H2Avii2.9700H9···N13i2.553 (14)
C8···H4Bvii2.8800
C8A—N9—C9A108.60 (7)C12—C11—C13115.24 (8)
C9A—N9—H9127.6 (9)N12—C12—C11179.07 (10)
C8A—N9—H9122.1 (9)N13—C13—C11179.33 (10)
C2—C1—C11119.03 (8)C1—C2—H2A109.00
C2—C1—C9A115.16 (7)C1—C2—H2B109.00
C9A—C1—C11125.72 (8)C3—C2—H2A109.00
C1—C2—C3114.61 (8)C3—C2—H2B109.00
C2—C3—C4112.31 (8)H2A—C2—H2B108.00
C3—C4—C4A109.95 (7)C2—C3—H3A109.00
C4—C4A—C9A123.68 (8)C2—C3—H3B109.00
C4B—C4A—C9A107.00 (8)C4—C3—H3A109.00
C4—C4A—C4B129.32 (8)C4—C3—H3B109.00
C5—C4B—C8A119.68 (9)H3A—C3—H3B108.00
C4A—C4B—C5133.21 (8)C3—C4—H4A110.00
C4A—C4B—C8A107.11 (8)C3—C4—H4B110.00
C4B—C5—C6118.49 (9)C4A—C4—H4A110.00
C5—C6—C7120.75 (10)C4A—C4—H4B110.00
C6—C7—C8122.29 (10)H4A—C4—H4B108.00
C7—C8—C8A117.05 (9)C4B—C5—H5121.00
N9—C8A—C4B108.30 (8)C6—C5—H5121.00
N9—C8A—C8129.97 (8)C5—C6—H6120.00
C4B—C8A—C8121.72 (8)C7—C6—H6120.00
N9—C9A—C1127.87 (8)C6—C7—H7119.00
C1—C9A—C4A123.12 (8)C8—C7—H7119.00
N9—C9A—C4A108.99 (8)C7—C8—H8121.00
C1—C11—C13123.57 (9)C8A—C8—H8121.00
C1—C11—C12121.09 (8)
C9A—N9—C8A—C4B−0.03 (12)C4—C4A—C4B—C8A179.76 (8)
C9A—N9—C8A—C8−178.67 (9)C9A—C4A—C4B—C5−179.41 (10)
C8A—N9—C9A—C1−177.78 (8)C9A—C4A—C4B—C8A0.72 (10)
C8A—N9—C9A—C4A0.48 (10)C4—C4A—C9A—N9−179.85 (8)
C9A—C1—C2—C328.90 (11)C4—C4A—C9A—C1−1.49 (13)
C11—C1—C2—C3−154.52 (8)C4B—C4A—C9A—N9−0.75 (9)
C2—C1—C9A—N9176.14 (8)C4B—C4A—C9A—C1177.62 (8)
C2—C1—C9A—C4A−1.90 (12)C4A—C4B—C5—C6−178.23 (10)
C11—C1—C9A—N9−0.17 (14)C8A—C4B—C5—C61.62 (14)
C11—C1—C9A—C4A−178.21 (8)C4A—C4B—C8A—N9−0.44 (10)
C2—C1—C11—C120.52 (13)C4A—C4B—C8A—C8178.34 (8)
C2—C1—C11—C13−175.65 (8)C5—C4B—C8A—N9179.67 (8)
C9A—C1—C11—C12176.71 (8)C5—C4B—C8A—C8−1.55 (14)
C9A—C1—C11—C130.54 (14)C4B—C5—C6—C7−0.78 (15)
C1—C2—C3—C4−52.67 (10)C5—C6—C7—C8−0.22 (16)
C2—C3—C4—C4A46.84 (10)C6—C7—C8—C8A0.34 (15)
C3—C4—C4A—C4B159.52 (9)C7—C8—C8A—N9179.04 (9)
C3—C4—C4A—C9A−21.59 (12)C7—C8—C8A—C4B0.55 (14)
C4—C4A—C4B—C5−0.37 (17)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z; (iii) −x, −y, −z; (iv) x, y−1, z; (v) x+1/2, −y+1/2, z−1/2; (vi) −x+1/2, y−1/2, −z+1/2; (vii) −x+1/2, y+1/2, −z+1/2; (viii) −x−1/2, y−1/2, −z+1/2; (ix) −x−1/2, y+1/2, −z+1/2; (x) x−1/2, −y+1/2, z+1/2; (xi) x, y+1, z.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4B,C5–C8,C8A ring.
D—H···AD—HH···AD···AD—H···A
N9—H9···N130.913 (14)2.508 (14)3.2626 (12)140.3 (11)
N9—H9···N13i0.913 (14)2.553 (14)3.2267 (12)131.1 (11)
C2—H2A···Cg1vi0.992.793.6244 (10)142

Symmetry codes: (i) −x+1, −y+1, −z; (vi) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2576).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gunaseelan, A. T., Prabakaran, K., Prasad, K. J. R., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o1946–o1947. [PMC free article] [PubMed]
  • Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007a). Acta Cryst. E63, o2413–o2414.
  • Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007b). Acta Cryst. E63, o2729–o2730.
  • Nakahara, K., Trakoontivakorn, G., Alzoreky, N. S., Ono, H., Onishi-Kameyama, M. & Yoshida, M. (2002). J. Agric. Food Chem.50, 4796–4802. [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem.47, 444–447. [PubMed]
  • Scott, T. L., Yu, X., Gorugantula, S. P., Carrero-Martinez, G. & Söderberg, B. C. G. (2006). Tetrahedron, 62, 10835–10842.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sridharan, M., Prasad, K. J. R., Gunaseelan, A. T., Thiruvalluvar, A. & Linden, A. (2008). Acta Cryst. E64, o763–o764. [PMC free article] [PubMed]
  • Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem.49, 5589–5594. [PubMed]
  • Thiruvalluvar, A., Gunaseelan, A. T., Martin, A. E., Prasad, K. J. R. & Butcher, R. J. (2007). Acta Cryst. E63, o3524.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography