PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m791.
Published online 2010 June 16. doi:  10.1107/S1600536810021793
PMCID: PMC3006710

(2-Meth­oxy­benz­yl)(2-meth­oxy­benzyl­idene)aza­nium (2-meth­oxy­phen­yl)methanaminium tetra­chloridozincate(II) monohydrate

Abstract

The title compound, (C8H12NO)(C16H18NO2)[ZnCl4]·H2O, was obtained as a by-product of the Zn2+ and HCl catalyzed condensation of (2-meth­oxy­phen­yl)methanamine in water. Both cations feature an intra­molecular N—H(...)O hydrogen bond. In the crystal, the components are linked by an extensive three-dimensional network of N—H(...)O, O—H(...)Cl and N—H(...)Cl hydrogen bonds (three of them bifurcated). Weak C—H(...)O intera­ctions also occur.

Related literature

For related meta-chlorido complexes, see: Ben Gharbia et al. (2005 [triangle], 2008 [triangle]). For Zn—Cl distances and Cl—Zn—Cl bond angles, see: Gayathri et al. (2008 [triangle]); Hosseinian & Mahjoub (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m791-scheme1.jpg

Experimental

Crystal data

  • (C8H12NO)(C16H18NO2)[ZnCl4]·H2O
  • M r = 619.69
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m791-efi1.jpg
  • a = 8.0884 (9) Å
  • b = 12.424 (2) Å
  • c = 14.678 (2) Å
  • α = 98.23 (1)°
  • β = 97.43 (1)°
  • γ = 90.29 (1)°
  • V = 1447.1 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.25 mm−1
  • T = 293 K
  • 0.54 × 0.47 × 0.25 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer
  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]; Clark & Reid, 1995 [triangle]) T min = 0.576, T max = 0.749
  • 12584 measured reflections
  • 6583 independent reflections
  • 4644 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.087
  • S = 0.98
  • 6583 reflections
  • 329 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.72 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021793/hb5489sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021793/hb5489Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

supplementary crystallographic information

Comment

As a part of our ongoing investigations in molecular salts containing meta-chlorido complexes (Ben Gharbia et al., 2005; Ben Gharbia et al., 2008), we report here the crystal structure of one such compound, (C16H18NO2)(C8H12NO)[ZnCl4].H2O. The title compound was obtained as a byproduct of the Zn2+ and HCl catalyzed condensation of (2-methoxyphenyl) methanamine in water. Subsequent crystallization from the reaction mixture yielded among the main reaction products crystals of the title compound that consist of one N-(2-methoxybenzylidene)-1-(2-methoxyphenyl)methanaminnium cation, one (2-methoxyphenyl) methanaminium cation, one ZnCl42- anion and one interstitial water molecule (Fig. 1).

The distance N1—C9 [1.273 (2) Å] is substantially shorter than the one of N1—C8 [1.477 (2) Å], indicating the presence of a double bond in the condensation product, thus indicating the nature of the organic molecules in the crystal as indictated in Scheme 1. Preliminary NMR data on the material indicate that the bulk of the reaction product is not identical with the title compound. Further investigations into the nature of the bulk material are under way.

The Cl—Zn—Cl bond angles in the title compound show relatively little distortion from a regular tetrahedron [spread values 104.45 (3)–111.78 (2)] (Gayathri et al., 2008, Hosseinian et al., 2009). Classic N—H···O, O—H···Cl and N—H···Cl hydrogen bonds are observed, which link the two types of organic ammonium cations, the anionic complexes [ZnCl4]2- and the uncoordinated water molecules into a 3-D hydrogen bonded network, as shown in Fig. 2. Three of the hydrogen bonds are bifurcated: N1—H1··· (Cl2,O2), N2—H2A···(O3,O4) and N2—H2B···(O4,Cl3).

Experimental

An aqueous solution of (2-methoxyphenyl) methanamine (2-methoxybenzylamine), zinc chloride and 1 M hydrochloric acid in a Petri disk was slowly evaporated at room temperature. A colourless block of (I), which remained stable under normal conditions of temperature and humidity, was isolated as a byproduct of the reaction.

Refinement

C—H and ammonium H atoms were placed in calculated positions with C—H in the range 0.93–0.97 and N—H equal to 0.89 Å. The imminium and the water hydrogen atom postitions were refined with N—H and O—H distance restraints of 0.89 (2) and 0.82 (2) Å. The Uiso(H) values of all H atoms were constrained to 1.2 or 1.5 times Ueq of the respective parent atom.

Figures

Fig. 1.
A view of the title compound, showing 50% probability displacement ellipsoids (arbitrary spheres for the H atoms).
Fig. 2.
Projection of the structure along the a axis. Hydrogen bonds are denoted by dotted lines.

Crystal data

(C8H12NO)(C16H18NO2)[ZnCl4]·H2OZ = 2
Mr = 619.69F(000) = 640
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.0884 (9) ÅCell parameters from 5313 reflections
b = 12.424 (2) Åθ = 3.0–29.2°
c = 14.678 (2) ŵ = 1.25 mm1
α = 98.23 (1)°T = 293 K
β = 97.43 (1)°Block, colourless
γ = 90.29 (1)°0.54 × 0.47 × 0.25 mm
V = 1447.1 (3) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer6583 independent reflections
Radiation source: fine-focus sealed tube4644 reflections with I > 2σ(I)
graphiteRint = 0.028
ω scansθmax = 29.5°, θmin = 3.0°
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009; Clark & Reid, 1995)h = −10→11
Tmin = 0.576, Tmax = 0.749k = −15→16
12584 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 0.98w = 1/[σ2(Fo2) + (0.0435P)2] where P = (Fo2 + 2Fc2)/3
6583 reflections(Δ/σ)max = 0.001
329 parametersΔρmax = 0.72 e Å3
3 restraintsΔρmin = −0.64 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2523 (3)0.0313 (2)0.58855 (19)0.0669 (8)
H1A0.2600−0.00550.52720.100*
H1B0.15790.07780.58690.100*
H1C0.2392−0.02140.62920.100*
C20.5461 (3)0.04191 (18)0.63917 (14)0.0377 (5)
C30.5657 (3)−0.06829 (19)0.61983 (16)0.0486 (6)
H30.4754−0.11300.59160.058*
C40.7185 (3)−0.1128 (2)0.64206 (17)0.0559 (6)
H40.7313−0.18750.62850.067*
C50.8521 (3)−0.0475 (2)0.68406 (17)0.0535 (6)
H50.9549−0.07790.69990.064*
C60.8333 (3)0.06297 (19)0.70261 (14)0.0421 (5)
H60.92470.10700.73030.051*
C70.6816 (2)0.11022 (17)0.68108 (13)0.0331 (4)
C80.6598 (3)0.23148 (16)0.70157 (13)0.0367 (5)
H8A0.56290.24610.73360.044*
H8B0.75680.26460.74180.044*
C90.5018 (2)0.31536 (16)0.57852 (13)0.0331 (4)
H90.41290.31620.61290.040*
C100.4693 (2)0.35513 (16)0.49025 (13)0.0326 (4)
C110.3132 (2)0.39947 (17)0.46852 (15)0.0390 (5)
H110.23800.40480.51170.047*
C120.2683 (3)0.43548 (18)0.38452 (16)0.0485 (6)
H120.16410.46490.37090.058*
C130.3800 (3)0.42721 (19)0.32143 (16)0.0536 (6)
H130.34980.45060.26430.064*
C140.5355 (3)0.3854 (2)0.34018 (15)0.0469 (6)
H140.60980.38140.29650.056*
C150.5808 (2)0.34898 (17)0.42502 (14)0.0360 (5)
C160.8537 (3)0.2994 (3)0.38782 (19)0.0764 (9)
H16A0.81190.25540.33010.115*
H16B0.95270.26780.41530.115*
H16C0.87970.37140.37660.115*
C170.2513 (3)0.1890 (3)0.1188 (2)0.0783 (9)
H17A0.21400.11490.09860.117*
H17B0.16470.23700.10030.117*
H17C0.27760.20100.18520.117*
C180.5273 (3)0.14345 (19)0.08828 (15)0.0467 (6)
C190.5371 (4)0.0578 (2)0.14046 (17)0.0616 (7)
H190.44960.04250.17220.074*
C200.6792 (4)−0.0042 (2)0.14433 (19)0.0741 (8)
H200.6864−0.06210.17830.089*
C210.8083 (4)0.0192 (3)0.0987 (2)0.0772 (9)
H210.9038−0.02210.10230.093*
C220.7973 (3)0.1043 (2)0.04706 (19)0.0641 (7)
H220.88620.12000.01640.077*
C230.6558 (3)0.16659 (19)0.04026 (15)0.0435 (5)
C240.6378 (3)0.2543 (2)−0.02067 (16)0.0512 (6)
H24A0.73400.2540−0.05390.061*
H24B0.53970.2379−0.06630.061*
Cl30.40847 (6)0.41374 (5)0.81903 (4)0.04914 (15)
Cl20.04753 (7)0.32552 (5)0.63718 (3)0.05224 (16)
Cl10.03902 (8)0.57253 (6)0.81699 (4)0.06066 (18)
Cl40.03288 (9)0.29378 (6)0.88415 (4)0.0746 (2)
N10.6383 (2)0.27933 (13)0.61445 (11)0.0334 (4)
H10.729 (2)0.2772 (17)0.5852 (13)0.040*
N20.6225 (2)0.36549 (15)0.03186 (13)0.0488 (5)
H2A0.52180.37170.05010.073*
H2B0.63650.4152−0.00470.073*
H2C0.70000.37560.08140.073*
O10.40047 (18)0.09490 (13)0.62188 (11)0.0508 (4)
O20.72997 (17)0.30455 (13)0.44960 (10)0.0458 (4)
O30.3943 (2)0.20972 (14)0.07819 (12)0.0616 (5)
O40.2655 (2)0.45092 (16)0.04551 (11)0.0573 (5)
H4B0.220 (3)0.412 (2)0.0009 (15)0.086*
H4A0.208 (3)0.473 (3)0.0836 (17)0.086*
Zn10.12911 (3)0.39816 (2)0.786811 (15)0.03902 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0402 (13)0.079 (2)0.0807 (19)−0.0143 (13)0.0011 (13)0.0147 (16)
C20.0393 (12)0.0406 (14)0.0358 (11)−0.0040 (10)0.0081 (9)0.0113 (10)
C30.0548 (14)0.0362 (14)0.0524 (14)−0.0100 (11)0.0027 (11)0.0031 (12)
C40.0713 (18)0.0304 (14)0.0637 (16)0.0043 (12)0.0050 (13)0.0018 (12)
C50.0504 (14)0.0428 (16)0.0665 (16)0.0090 (11)0.0044 (12)0.0085 (13)
C60.0401 (12)0.0393 (14)0.0461 (13)−0.0011 (10)0.0011 (10)0.0075 (11)
C70.0400 (11)0.0314 (12)0.0299 (10)−0.0007 (9)0.0076 (8)0.0080 (9)
C80.0462 (12)0.0327 (12)0.0311 (10)0.0012 (9)0.0046 (9)0.0050 (9)
C90.0349 (11)0.0276 (11)0.0367 (11)−0.0013 (8)0.0073 (9)0.0024 (9)
C100.0343 (10)0.0275 (11)0.0357 (11)−0.0030 (8)0.0015 (8)0.0061 (9)
C110.0349 (11)0.0307 (12)0.0504 (13)−0.0035 (9)0.0017 (10)0.0061 (10)
C120.0416 (12)0.0413 (14)0.0599 (15)−0.0027 (10)−0.0104 (11)0.0142 (12)
C130.0635 (16)0.0510 (16)0.0454 (13)−0.0112 (12)−0.0118 (12)0.0208 (12)
C140.0510 (14)0.0531 (15)0.0377 (12)−0.0075 (11)0.0052 (10)0.0118 (11)
C150.0355 (11)0.0327 (12)0.0393 (11)−0.0066 (9)0.0008 (9)0.0073 (10)
C160.0522 (16)0.116 (3)0.0707 (18)0.0130 (16)0.0307 (14)0.0248 (18)
C170.0612 (17)0.080 (2)0.104 (2)0.0048 (15)0.0403 (17)0.0217 (19)
C180.0518 (14)0.0454 (15)0.0433 (13)0.0018 (11)0.0046 (11)0.0090 (12)
C190.0748 (18)0.0559 (18)0.0588 (16)0.0021 (14)0.0137 (14)0.0202 (14)
C200.101 (2)0.058 (2)0.0637 (18)0.0116 (17)−0.0055 (17)0.0245 (16)
C210.069 (2)0.075 (2)0.084 (2)0.0259 (16)−0.0060 (16)0.0126 (18)
C220.0508 (15)0.066 (2)0.0751 (18)0.0077 (13)0.0082 (13)0.0080 (16)
C230.0402 (12)0.0427 (14)0.0457 (13)0.0002 (10)0.0025 (10)0.0019 (11)
C240.0579 (15)0.0516 (16)0.0472 (13)−0.0012 (12)0.0177 (11)0.0080 (12)
Cl30.0335 (3)0.0638 (4)0.0473 (3)0.0050 (3)0.0046 (2)−0.0010 (3)
Cl20.0449 (3)0.0768 (5)0.0322 (3)−0.0055 (3)0.0033 (2)0.0003 (3)
Cl10.0586 (4)0.0643 (5)0.0540 (4)0.0230 (3)−0.0034 (3)0.0003 (3)
Cl40.0860 (5)0.0963 (6)0.0413 (3)−0.0483 (4)0.0023 (3)0.0165 (4)
N10.0369 (9)0.0298 (10)0.0347 (9)−0.0008 (8)0.0067 (7)0.0067 (8)
N20.0512 (11)0.0436 (12)0.0522 (11)−0.0044 (9)0.0039 (9)0.0118 (10)
O10.0377 (8)0.0492 (10)0.0652 (10)−0.0031 (7)0.0023 (7)0.0120 (8)
O20.0374 (8)0.0595 (11)0.0444 (8)0.0057 (7)0.0109 (7)0.0159 (8)
O30.0493 (10)0.0612 (12)0.0850 (13)0.0119 (8)0.0259 (9)0.0309 (10)
O40.0568 (11)0.0688 (13)0.0442 (10)−0.0155 (9)0.0040 (8)0.0048 (10)
Zn10.03518 (14)0.05046 (18)0.03133 (14)−0.00161 (11)0.00427 (10)0.00579 (12)

Geometric parameters (Å, °)

C1—O11.424 (3)C16—O21.431 (2)
C1—H1A0.9600C16—H16A0.9600
C1—H1B0.9600C16—H16B0.9600
C1—H1C0.9600C16—H16C0.9600
C2—O11.365 (2)C17—O31.407 (3)
C2—C31.372 (3)C17—H17A0.9600
C2—C71.402 (3)C17—H17B0.9600
C3—C41.377 (3)C17—H17C0.9600
C3—H30.9300C18—O31.364 (3)
C4—C51.372 (3)C18—C231.380 (3)
C4—H40.9300C18—C191.394 (3)
C5—C61.374 (3)C19—C201.386 (4)
C5—H50.9300C19—H190.9300
C6—C71.382 (3)C20—C211.362 (4)
C6—H60.9300C20—H200.9300
C7—C81.509 (3)C21—C221.384 (4)
C8—N11.477 (2)C21—H210.9300
C8—H8A0.9700C22—C231.386 (3)
C8—H8B0.9700C22—H220.9300
C9—N11.273 (2)C23—C241.501 (3)
C9—C101.445 (3)C24—N21.497 (3)
C9—H90.9300C24—H24A0.9700
C10—C151.392 (3)C24—H24B0.9700
C10—C111.397 (3)Cl3—Zn12.2495 (6)
C11—C121.377 (3)Cl2—Zn12.2639 (6)
C11—H110.9300Cl1—Zn12.2903 (8)
C12—C131.369 (3)Cl4—Zn12.2664 (7)
C12—H120.9300N1—H10.893 (14)
C13—C141.373 (3)N2—H2A0.8900
C13—H130.9300N2—H2B0.8900
C14—C151.391 (3)N2—H2C0.8900
C14—H140.9300O4—H4B0.801 (17)
C15—O21.357 (2)O4—H4A0.795 (17)
O1—C1—H1A109.5H16A—C16—H16B109.5
O1—C1—H1B109.5O2—C16—H16C109.5
H1A—C1—H1B109.5H16A—C16—H16C109.5
O1—C1—H1C109.5H16B—C16—H16C109.5
H1A—C1—H1C109.5O3—C17—H17A109.5
H1B—C1—H1C109.5O3—C17—H17B109.5
O1—C2—C3125.4 (2)H17A—C17—H17B109.5
O1—C2—C7114.2 (2)O3—C17—H17C109.5
C3—C2—C7120.4 (2)H17A—C17—H17C109.5
C2—C3—C4120.2 (2)H17B—C17—H17C109.5
C2—C3—H3119.9O3—C18—C23114.11 (19)
C4—C3—H3119.9O3—C18—C19124.9 (2)
C5—C4—C3120.3 (2)C23—C18—C19121.0 (2)
C5—C4—H4119.9C20—C19—C18119.1 (2)
C3—C4—H4119.9C20—C19—H19120.4
C4—C5—C6119.6 (2)C18—C19—H19120.4
C4—C5—H5120.2C21—C20—C19120.4 (3)
C6—C5—H5120.2C21—C20—H20119.8
C5—C6—C7121.5 (2)C19—C20—H20119.8
C5—C6—H6119.3C20—C21—C22120.1 (3)
C7—C6—H6119.3C20—C21—H21120.0
C6—C7—C2118.0 (2)C22—C21—H21120.0
C6—C7—C8121.79 (19)C21—C22—C23121.0 (3)
C2—C7—C8120.23 (18)C21—C22—H22119.5
N1—C8—C7110.25 (16)C23—C22—H22119.5
N1—C8—H8A109.6C18—C23—C22118.4 (2)
C7—C8—H8A109.6C18—C23—C24120.1 (2)
N1—C8—H8B109.6C22—C23—C24121.5 (2)
C7—C8—H8B109.6N2—C24—C23113.39 (18)
H8A—C8—H8B108.1N2—C24—H24A108.9
N1—C9—C10127.33 (18)C23—C24—H24A108.9
N1—C9—H9116.3N2—C24—H24B108.9
C10—C9—H9116.3C23—C24—H24B108.9
C15—C10—C11118.40 (18)H24A—C24—H24B107.7
C15—C10—C9124.36 (18)C9—N1—C8124.65 (17)
C11—C10—C9117.20 (18)C9—N1—H1120.6 (13)
C12—C11—C10121.4 (2)C8—N1—H1114.6 (13)
C12—C11—H11119.3C24—N2—H2A109.5
C10—C11—H11119.3C24—N2—H2B109.5
C13—C12—C11118.8 (2)H2A—N2—H2B109.5
C13—C12—H12120.6C24—N2—H2C109.5
C11—C12—H12120.6H2A—N2—H2C109.5
C12—C13—C14121.8 (2)H2B—N2—H2C109.5
C12—C13—H13119.1C2—O1—C1118.18 (19)
C14—C13—H13119.1C15—O2—C16119.14 (17)
C13—C14—C15119.4 (2)C18—O3—C17119.08 (19)
C13—C14—H14120.3H4B—O4—H4A115 (3)
C15—C14—H14120.3Cl3—Zn1—Cl2111.78 (2)
O2—C15—C14123.99 (19)Cl3—Zn1—Cl4108.77 (3)
O2—C15—C10115.83 (17)Cl2—Zn1—Cl4110.35 (3)
C14—C15—C10120.17 (19)Cl3—Zn1—Cl1104.45 (3)
O2—C16—H16A109.5Cl2—Zn1—Cl1111.19 (3)
O2—C16—H16B109.5Cl4—Zn1—Cl1110.14 (3)
O1—C2—C3—C4−178.8 (2)C11—C10—C15—C14−0.7 (3)
C7—C2—C3—C40.5 (3)C9—C10—C15—C14177.2 (2)
C2—C3—C4—C50.3 (4)O3—C18—C19—C20179.4 (2)
C3—C4—C5—C6−1.0 (4)C23—C18—C19—C200.5 (4)
C4—C5—C6—C70.9 (3)C18—C19—C20—C210.8 (4)
C5—C6—C7—C2−0.2 (3)C19—C20—C21—C22−0.9 (5)
C5—C6—C7—C8179.77 (18)C20—C21—C22—C23−0.4 (4)
O1—C2—C7—C6178.82 (17)O3—C18—C23—C22179.3 (2)
C3—C2—C7—C6−0.5 (3)C19—C18—C23—C22−1.7 (4)
O1—C2—C7—C8−1.1 (3)O3—C18—C23—C24−3.2 (3)
C3—C2—C7—C8179.54 (18)C19—C18—C23—C24175.8 (2)
C6—C7—C8—N1108.7 (2)C21—C22—C23—C181.6 (4)
C2—C7—C8—N1−71.3 (2)C21—C22—C23—C24−175.8 (2)
N1—C9—C10—C157.4 (3)C18—C23—C24—N264.7 (3)
N1—C9—C10—C11−174.7 (2)C22—C23—C24—N2−117.9 (2)
C15—C10—C11—C120.7 (3)C10—C9—N1—C8−174.76 (19)
C9—C10—C11—C12−177.4 (2)C7—C8—N1—C9108.3 (2)
C10—C11—C12—C130.0 (3)C3—C2—O1—C15.8 (3)
C11—C12—C13—C14−0.8 (4)C7—C2—O1—C1−173.46 (18)
C12—C13—C14—C150.8 (4)C14—C15—O2—C163.6 (3)
C13—C14—C15—O2178.8 (2)C10—C15—O2—C16−177.5 (2)
C13—C14—C15—C10−0.1 (3)C23—C18—O3—C17175.7 (2)
C11—C10—C15—O2−179.57 (19)C19—C18—O3—C17−3.3 (4)
C9—C10—C15—O2−1.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.89 (1)2.07 (2)2.680 (2)125 (2)
N1—H1···Cl2i0.89 (1)2.64 (2)3.3221 (18)135 (2)
N2—H2A···O40.892.303.102 (3)151
N2—H2A···O30.892.372.877 (2)116
N2—H2B···O4ii0.892.042.881 (3)158
N2—H2B···Cl3iii0.892.983.502 (2)120
N2—H2C···Cl1iv0.892.453.306 (2)162
O4—H4B···Cl4iii0.80 (2)2.44 (2)3.2323 (19)168 (3)
O4—H4A···Cl1v0.80 (2)2.72 (2)3.4165 (19)147 (3)
C8—H8A···Cl30.972.673.474 (2)140
C11—H11···Cl20.932.823.687 (2)155
C24—H24A···Cl4vi0.972.763.707 (3)166

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z; (iii) x, y, z−1; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z+1; (vi) x+1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5489).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Ben Gharbia, I., Kefi, R., El Glaoui, M., Jeanneau, E. & Ben Nasr, C. (2008). Acta Cryst. E64, m880.
  • Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct.220, 333–334.
  • Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  • Gayathri, D., Velmurugan, D., Hemalatha, P., Veeravazhuthi, V. & Ravikumar, K. (2008). Acta Cryst. E64, m848–m849. [PMC free article] [PubMed]
  • Hosseinian, A. & Mahjoub, A. R. (2009). Acta Cryst. E65, m1456. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography