PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1536–o1537.
Published online 2010 June 5. doi:  10.1107/S1600536810020295
PMCID: PMC3006709

(E)-4-Hy­droxy-2-[(2-hy­droxy­phen­yl)iminiometh­yl]phenolate

Abstract

The title compound, C13H11NO3, crystallizes in a zwitterionic form and has a trans configuration about the C=N bond. The mol­ecule is almost planar, the dihedral angle between the two benzene rings being 4.32 (8)°. The two hy­droxy substit­uents are coplanar with each of their attached benzene rings [r.m.s. deviations of 0.0053 (2) and 0.0052 (2) Å]. An intra­molecular N—H(...)O hydrogen bond formed between the iminium N and the phenolate O atom generates an S(6) ring motif. In the crystal, the mol­ecules are linked through O—H(...)O hydrogen bonds into chains along [110]. Two neighbouring chains are further connected through O—H(...)O hydrogen bonds in an anti­parallel manner. π–π inter­actions are also observed, with centroid–centroid distances of 3.7115 (19) and 3.743 (2) Å.

Related literature

For background to Schiff bases and their applications, see: Dao et al. (2000 [triangle]); Kagkelari et al. (2009 [triangle]); Karthikeyan et al. (2006 [triangle]); Sriram et al. (2006 [triangle]). For related structures, see: Eltayeb et al. (2009 [triangle], 2010a [triangle],b [triangle]); Tan & Liu (2009 [triangle]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1536-scheme1.jpg

Experimental

Crystal data

  • C13H11NO3
  • M r = 229.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1536-efi1.jpg
  • a = 11.048 (5) Å
  • b = 8.187 (3) Å
  • c = 22.858 (10) Å
  • β = 102.242 (13)°
  • V = 2020.5 (15) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 100 K
  • 0.35 × 0.12 × 0.04 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.963, T max = 0.996
  • 15107 measured reflections
  • 2967 independent reflections
  • 2122 reflections with I > 2σ(I)
  • R int = 0.087

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.173
  • S = 1.06
  • 2967 reflections
  • 198 parameters
  • All H-atom parameters refined
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020295/rz2453sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020295/rz2453Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (PKIMIA/815002). NEE thanks Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing study leave. The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Schiff base ligands and their complexes have varieties of biological activities and applications such as antibacterial and antifungal (Karthikeyan et al., 2006), anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006) properties as well as being used in coordination chemistry (Kagkelari et al., 2009). Our on going research on Schiff base ligands and their complexes (Eltayeb et al., 2009; 2010a,b) has lead us to synthesize the title Schiff base ligand (I) and its crystal structure is reported herein.

The molecule of (I) (Fig. 1), C13H11NO3, crystallizes in a zwitterionic form with cationic iminium and anionic enolate. The molecule exists in a trans configuration about the C═N bond [1.302 (2)Å] as indicated by the torsion angle C1–N1–C7–C8 of 178.69 (15)°. The molecule is essentially planar with the dihedral angle of 4.32 (8)° between the two benzene rings. The two hydroxy groups are co-planar with each of their attached benzene rings with the r.m.s. of 0.0053 (2) and 0.0052 (2) Å for the seven non hydrogen atoms of C1–C6/O1 and C8–C13/O3, respectively. An intramolecular N—H···O hydrogen bond (Fig. 1; Table 1) between the NH+ with the phenolate O- atom generate an S(6) ring motif (Bernstein et al., 1995) which stabilizes the planarity of the molecule. The bond distances are in normal ranges (Allen et al., 1987) and comparable with those of related structures (Eltayeb et al., 2009; 2010a,b; Tan & Liu, 2009).

In the crystal packing (Fig. 2), the zwitterionic molecules are linked through O3—H1O3···O2 hydrogen bonds into chains along the [110] direction and two neighboring chains are further connected to each other by O1—H1O1···O2 hydrogen bonds in an antiparallel manner (Table 1). The crystal is stabilized by intermolecular O—H···O hydrogen bonds and weak C—H···O interactions (Table 1). π–π interactions with centroid···centroid distances of Cg1···Cg2iii = 3.7115 (19) Å and Cg1···Cg2iv = 3.743 (2) Å were observed (symmetry codes (iii) = -x, 1-y, 1-z and (iv) = 1/2-x, 1/2-y, 1-z); Cg1 and Cg2 are the centroids of C1–C6 and C8–C13 benzene rings, respectively.

Experimental

The title compound was synthesized by adding 2,5-dihydroxybenzaldehyde (0.276 g, 2 mmol) to a solution of 2-aminophenol (0.218 g, 2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant red solution was filtered and the filtrate was evaporated to give a red powder product. Red plate-shaped single crystals of the title compound suitable for x-ray structure determination were obtained from acetone by slow evaporation in the refrigerator after a few days.

Refinement

All H atoms were located from the difference map and isotropically refined. The highest residual electron density peak is located at 0.76 Å from C8 and the deepest hole is located at 1.46 Å from H1O1.

Figures

Fig. 1.
The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bond is shown as dashed line.
Fig. 2.
The crystal packing of the title compound viewed down the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H11NO3F(000) = 960
Mr = 229.23Dx = 1.507 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2967 reflections
a = 11.048 (5) Åθ = 1.8–30.1°
b = 8.187 (3) ŵ = 0.11 mm1
c = 22.858 (10) ÅT = 100 K
β = 102.242 (13)°Plate, red
V = 2020.5 (15) Å30.35 × 0.12 × 0.04 mm
Z = 8

Data collection

Bruker APEXII DUO CCD area-detector diffractometer2967 independent reflections
Radiation source: sealed tube2122 reflections with I > 2σ(I)
graphiteRint = 0.087
[var phi] and ω scansθmax = 30.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −15→15
Tmin = 0.963, Tmax = 0.996k = −11→11
15107 measured reflectionsl = −32→32

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173All H-atom parameters refined
S = 1.06w = 1/[σ2(Fo2) + (0.1024P)2 + 0.2914P] where P = (Fo2 + 2Fc2)/3
2967 reflections(Δ/σ)max = 0.001
198 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.33647 (12)0.68246 (15)0.56400 (5)0.0181 (3)
H1O10.339 (3)0.792 (4)0.5686 (14)0.049 (8)*
O20.19184 (11)0.49929 (14)0.43502 (5)0.0172 (3)
O3−0.15299 (12)0.01393 (15)0.36222 (6)0.0195 (3)
H1O3−0.212 (3)0.001 (3)0.3867 (14)0.045 (8)*
N10.18126 (13)0.43402 (17)0.54431 (6)0.0136 (3)
H1N10.213 (2)0.484 (3)0.5165 (12)0.034 (7)*
C10.22799 (14)0.47819 (19)0.60450 (7)0.0137 (3)
C20.30862 (15)0.6115 (2)0.61334 (7)0.0147 (3)
C30.35926 (16)0.6624 (2)0.67122 (8)0.0167 (3)
H30.413 (2)0.755 (3)0.6766 (10)0.024 (6)*
C40.32876 (16)0.5824 (2)0.71942 (8)0.0177 (3)
H40.363 (2)0.614 (3)0.7600 (11)0.026 (6)*
C50.24766 (16)0.4510 (2)0.71042 (8)0.0178 (3)
H50.227 (2)0.393 (3)0.7447 (11)0.028 (6)*
C60.19743 (16)0.3972 (2)0.65277 (7)0.0161 (3)
H60.1437 (19)0.309 (3)0.6478 (9)0.016 (5)*
C70.09838 (15)0.32381 (19)0.52344 (7)0.0142 (3)
H70.0643 (18)0.254 (2)0.5512 (9)0.013 (5)*
C80.05807 (15)0.29461 (19)0.46077 (7)0.0139 (3)
C90.10800 (15)0.38498 (19)0.41820 (7)0.0139 (3)
C100.06509 (16)0.3443 (2)0.35726 (7)0.0160 (3)
H100.101 (2)0.405 (3)0.3290 (11)0.027 (6)*
C11−0.02034 (15)0.2222 (2)0.34016 (7)0.0156 (3)
H11−0.049 (2)0.192 (3)0.2956 (11)0.025 (6)*
C12−0.06925 (15)0.1342 (2)0.38267 (7)0.0144 (3)
C13−0.03095 (15)0.17081 (19)0.44220 (7)0.0146 (3)
H13−0.066 (2)0.111 (3)0.4732 (10)0.024 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0240 (7)0.0158 (6)0.0154 (6)−0.0033 (5)0.0063 (5)0.0012 (4)
O20.0194 (6)0.0153 (6)0.0168 (6)−0.0061 (5)0.0040 (5)−0.0009 (4)
O30.0194 (6)0.0202 (6)0.0198 (6)−0.0099 (5)0.0062 (5)−0.0055 (5)
N10.0137 (6)0.0136 (6)0.0131 (6)−0.0001 (5)0.0018 (5)0.0008 (5)
C10.0141 (7)0.0136 (7)0.0128 (7)0.0030 (6)0.0014 (6)−0.0005 (5)
C20.0157 (7)0.0140 (7)0.0146 (7)0.0013 (6)0.0037 (6)0.0021 (6)
C30.0169 (8)0.0139 (7)0.0182 (8)−0.0009 (6)0.0014 (6)−0.0019 (6)
C40.0205 (8)0.0174 (8)0.0139 (7)0.0026 (6)0.0011 (6)−0.0008 (6)
C50.0203 (8)0.0185 (8)0.0150 (7)0.0031 (7)0.0045 (6)0.0021 (6)
C60.0168 (8)0.0151 (8)0.0163 (8)−0.0005 (6)0.0036 (6)0.0016 (6)
C70.0134 (7)0.0131 (7)0.0164 (7)0.0011 (6)0.0037 (6)0.0015 (6)
C80.0133 (7)0.0130 (7)0.0152 (7)−0.0002 (6)0.0025 (6)−0.0010 (6)
C90.0119 (7)0.0127 (7)0.0172 (7)0.0002 (6)0.0032 (6)−0.0001 (6)
C100.0176 (8)0.0159 (7)0.0153 (7)−0.0014 (6)0.0049 (6)0.0010 (6)
C110.0143 (7)0.0175 (7)0.0151 (7)0.0004 (6)0.0035 (6)−0.0011 (6)
C120.0125 (7)0.0123 (7)0.0183 (8)−0.0021 (6)0.0031 (6)−0.0016 (6)
C130.0155 (7)0.0134 (7)0.0158 (7)−0.0012 (6)0.0052 (6)0.0010 (6)

Geometric parameters (Å, °)

O1—C21.3608 (19)C5—C61.389 (2)
O1—H1O10.91 (3)C5—H50.98 (2)
O2—C91.316 (2)C6—H60.93 (2)
O3—C121.364 (2)C7—C81.427 (2)
O3—H1O30.95 (3)C7—H70.99 (2)
N1—C71.302 (2)C8—C131.413 (2)
N1—C11.410 (2)C8—C91.423 (2)
N1—H1N10.89 (3)C9—C101.413 (2)
C1—C61.389 (2)C10—C111.373 (2)
C1—C21.396 (2)C10—H100.97 (2)
C2—C31.387 (2)C11—C121.406 (2)
C3—C41.383 (2)C11—H111.03 (2)
C3—H30.96 (2)C12—C131.370 (2)
C4—C51.387 (3)C13—H131.00 (2)
C4—H40.96 (2)
C2—O1—H1O1109.4 (19)C1—C6—H6122.1 (13)
C12—O3—H1O3112.0 (17)N1—C7—C8121.96 (15)
C7—N1—C1128.22 (15)N1—C7—H7120.0 (12)
C7—N1—H1N1114.2 (17)C8—C7—H7118.0 (12)
C1—N1—H1N1117.6 (17)C13—C8—C9120.89 (14)
C6—C1—C2120.88 (14)C13—C8—C7118.07 (14)
C6—C1—N1123.52 (15)C9—C8—C7121.02 (15)
C2—C1—N1115.60 (14)O2—C9—C10121.61 (14)
O1—C2—C3123.09 (15)O2—C9—C8121.39 (14)
O1—C2—C1117.61 (14)C10—C9—C8116.99 (15)
C3—C2—C1119.28 (15)C11—C10—C9121.25 (15)
C4—C3—C2120.03 (16)C11—C10—H10122.8 (14)
C4—C3—H3121.6 (14)C9—C10—H10116.0 (14)
C2—C3—H3118.3 (14)C10—C11—C12121.19 (15)
C3—C4—C5120.51 (15)C10—C11—H11120.5 (12)
C3—C4—H4122.0 (14)C12—C11—H11118.3 (12)
C5—C4—H4117.5 (14)O3—C12—C13122.86 (14)
C4—C5—C6120.17 (16)O3—C12—C11117.72 (15)
C4—C5—H5120.3 (14)C13—C12—C11119.42 (15)
C6—C5—H5119.5 (14)C12—C13—C8120.25 (14)
C5—C6—C1119.12 (16)C12—C13—H13120.8 (13)
C5—C6—H6118.8 (13)C8—C13—H13119.0 (13)
C7—N1—C1—C65.5 (3)N1—C7—C8—C90.4 (2)
C7—N1—C1—C2−174.41 (15)C13—C8—C9—O2−179.28 (14)
C6—C1—C2—O1178.56 (15)C7—C8—C9—O2−0.7 (2)
N1—C1—C2—O1−1.6 (2)C13—C8—C9—C10−0.4 (2)
C6—C1—C2—C30.5 (2)C7—C8—C9—C10178.20 (15)
N1—C1—C2—C3−179.68 (14)O2—C9—C10—C11178.48 (15)
O1—C2—C3—C4−178.66 (15)C8—C9—C10—C11−0.4 (2)
C1—C2—C3—C4−0.7 (2)C9—C10—C11—C120.6 (3)
C2—C3—C4—C50.0 (3)C10—C11—C12—O3−179.51 (15)
C3—C4—C5—C60.8 (3)C10—C11—C12—C130.0 (2)
C4—C5—C6—C1−1.0 (3)O3—C12—C13—C8178.68 (14)
C2—C1—C6—C50.4 (2)C11—C12—C13—C8−0.8 (2)
N1—C1—C6—C5−179.48 (15)C9—C8—C13—C121.0 (2)
C1—N1—C7—C8178.69 (15)C7—C8—C13—C12−177.65 (15)
N1—C7—C8—C13179.06 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.90 (3)1.74 (3)2.625 (2)166 (3)
O3—H1O3···O2ii0.95 (3)1.69 (3)2.633 (2)173 (2)
N1—H1N1···O20.89 (3)1.83 (3)2.581 (2)141 (2)
C13—H13···O1ii1.00 (2)2.60 (2)3.411 (3)137.8 (18)

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2453).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem 35, 805–813. [PubMed]
  • Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2010a). Acta Cryst. E66, o934–o935. [PMC free article] [PubMed]
  • Eltayeb, N. E., Teoh, S. G., Fun, H.-K. & Chantrapromma, S. (2010b). Acta Cryst. E66, o1262–o1263. [PMC free article] [PubMed]
  • Eltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o2065–o2066. [PMC free article] [PubMed]
  • Kagkelari, A., Papaefstahiou, G. S., Raptopoulou, C. P. & Zafiropoulos, T. F. (2009). Polyhedron, 28, 3279–3283.
  • Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem 14, 7482–7489. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]
  • Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett 16, 2127–2129. [PubMed]
  • Tan, G.-X. & Liu, X.-C. (2009). Acta Cryst. E65, o559. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography