PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m772–m773.
Published online 2010 June 16. doi:  10.1107/S1600536810021367
PMCID: PMC3006707

Bis[N,N-dimethyl-1-(10H-pyrido[3,2-b][1,4]benzothia­zin-10-yl)propan-2-aminium] tetrakis­(thio­cyanato-κN)cobaltate(II)

Abstract

The asymmetric unit of the title salt, (C16H20N3S)2[Co(NCS)4], comprises one monovalent isothio­pendylium cation and one-half of a divalent thio­cyanatocobaltate(II) anion (2 symmetry). The central thia­zine ring of the cation is slightly twisted in a boat-like fashion, with r.m.s. deviations from the mean plane of 0.272 (1) and 0.2852 (8) Å for the N and S atoms. The mol­ecular structure of the cation is stabilized by an intra­molecular N—H(...)N hydrogen bond. Within the complex anion, the CoII atom is tetra­hedrally surrounded by four N atoms of the thio­cyanate ligands. π–π stacking, with a distance of 3.7615 (10) Å between the centroids of benzene and pyridine rings, helps to consolidate the packing.

Related literature

For general background to isothipendyl, cobalt(II) and thio­cyanate compounds, see: Kinnamon et al. (1994 [triangle]); Moreau et al. (1995 [triangle]); Scott et al. (1990 [triangle]); Hudson et al. (2005 [triangle]). For a related structure, see: Shi et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m772-scheme1.jpg

Experimental

Crystal data

  • (C16H20N3S)2[Co(NCS)4]
  • M r = 864.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m772-efi1.jpg
  • a = 25.2420 (4) Å
  • b = 11.4357 (2) Å
  • c = 14.5939 (2) Å
  • β = 98.557 (1)°
  • V = 4165.78 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.75 mm−1
  • T = 295 K
  • 0.22 × 0.15 × 0.12 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: ψ scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.852, T max = 0.915
  • 48347 measured reflections
  • 6498 independent reflections
  • 4566 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.114
  • S = 1.01
  • 6498 reflections
  • 243 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021367/wm2356sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021367/wm2356Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the DST India (FIST programme) for the use of the diffractometer at the School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. They also thank Professor P. Thomas Muthiah for the data collection.

supplementary crystallographic information

Comment

The molecular structure of isothipendyl, C16H19N3S, is close to that of phenothiazines. Isothipendyl is an antihistamine used in the treatment of allergies. It was also found to be active against parasites causing filariasis (Kinnamon et al., 1994). Photobiological properties of isothipendyl were also investigated and found to have ultraviolet B (UVB) protective activity (Moreau et al., 1995). Studies also suggest that cobalt and thiocyanates play some role in phototoxicity and in the development of conjugates for photoimmunotherapy (Scott et al., 1990; Hudson et al., 2005). These outcomes arouse our interest and we prepared the title salt [(C16H20N3S)2{Co(NCS)4}], (I), for structural characterisation.

In the structure of (I), the Co atom of the anion is situated on a twofold rotation axis and is coordinated by four N atoms from four thiocyanate groups in a slightly distorted tetrahedral geometry (Fig. 1, Table 1). The bond lengths and bond angles of the cobaltate(II) anion are in good agreement with related structures (Shi et al., 2005).

Within the cation the dihedral angles between the benzene and the thiazine rings and between the pyridine and the thiazine rings are 15.73 (8)° and 14.77 (8)°, respectively. The central thiazine ring is slightly twisted as boat like. The deviation of the N and S atoms from the mean plane of the thiazine ring was found to be 0.272 (1) and 0.2852 (8) Å, respectively. The structure displays an intramolecular hydrogen bonding interaction between N3–H3A···N1 (Fig. 2 & Table 2).

There are significant π—π stacking interactions between the pyridine and benzene rings; the relevant distances are Cg2—Cg3i = 3.7615 (10) Å and Cg2—3iperp = 3.6975 (7) Å, and Cg3—Cg2ii = 3.7614 (10) Å and Cg3—2iiperp = 3.6820 (7) Å [symmetry codes: (i) 1/2 - x,1/2 + y,3/2 - z;(ii) 1/2 - x, -1/2 + y,3/2 - z; Cg2 and Cg3 are the centroids of the N1/C2–C6 and C7–C12 rings, respectively; CgIJperp is the perpendicular distance from CgI to ring J]. In addition, there are weak intermolecular C2—H2···S2 and C16—H16A···S2 interactions with H···S distances of 2.886 (10) and 2.919 (10) Å and D—H···A angles of 154.54 (12)° and 138.40 (14)°, respectively.

In the crystal structure, molecules stack along [010] (Fig. 3).

Experimental

The cobalt(II) salt was prepared by a single step method. Isothipendyl in ethanol (5 mmol) was slowly mixed with an ethanolic solution (5 mmol) of Co(SCN)2.2H2O. The mixture was kept at room temperature for 30 min and warmed on a water bath (343–353 K) for 1 h. Green crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent (M.P. 453 K; Yield 79%).

Refinement

All H atoms were positioned at calculated positions with N—H = 0.91Å, C—H = 0.93 Å for aromatic H atoms, 0.97 Å for methylene H atoms and 0.96Å for methyl H atoms. H atoms were refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(X) for other atoms (X = N, C).

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code a) -x, y, -z+1/2.
Fig. 2.
Packing of the molecules as viewed down [010].

Crystal data

(C16H20N3S)2[Co(NCS)4]F(000) = 1796
Mr = 864.07Dx = 1.378 Mg m3
Monoclinic, C2/cMelting point: 453 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 25.2420 (4) ÅCell parameters from 6498 reflections
b = 11.4357 (2) Åθ = 1.6–30.8°
c = 14.5939 (2) ŵ = 0.75 mm1
β = 98.557 (1)°T = 295 K
V = 4165.78 (11) Å3Plate, green
Z = 40.22 × 0.15 × 0.12 mm

Data collection

Bruker APEXII CCD area-detector diffractometer6498 independent reflections
Radiation source: fine-focus sealed tube4566 reflections with I > 2σ(I)
graphiteRint = 0.032
ω and [var phi] scansθmax = 30.8°, θmin = 1.6°
Absorption correction: ψ scan (SADABS; Sheldrick, 2004)h = −36→36
Tmin = 0.852, Tmax = 0.915k = −16→16
48347 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0516P)2 + 2.3179P] where P = (Fo2 + 2Fc2)/3
6498 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.00000.18800 (3)0.25000.05395 (11)
S10.169598 (17)0.36282 (5)0.31347 (4)0.06906 (15)
S20.09133 (3)0.39599 (6)0.04513 (5)0.0913 (2)
S3−0.09097 (2)−0.11877 (5)0.08464 (4)0.06810 (15)
N10.30192 (5)0.17216 (12)0.37667 (10)0.0479 (3)
N20.29026 (5)0.36667 (11)0.33141 (9)0.0428 (3)
N30.40850 (5)0.23282 (13)0.40260 (9)0.0503 (3)
H3A0.37810.18880.39530.060*
N40.04020 (8)0.28147 (18)0.17318 (14)0.0771 (5)
N5−0.04823 (6)0.08326 (15)0.17017 (11)0.0595 (4)
C20.28169 (8)0.06803 (16)0.39813 (13)0.0589 (4)
H20.30490.00490.41010.071*
C30.22864 (9)0.05145 (18)0.40307 (14)0.0663 (5)
H30.2161−0.02050.42040.080*
C40.19412 (7)0.14419 (19)0.38174 (14)0.0621 (5)
H40.15780.13520.38480.074*
C50.21316 (6)0.24990 (16)0.35591 (11)0.0487 (4)
C60.26864 (5)0.26126 (14)0.35550 (10)0.0413 (3)
C70.21115 (6)0.48282 (17)0.34832 (11)0.0506 (4)
C80.18804 (8)0.5880 (2)0.36902 (13)0.0653 (5)
H80.15130.59170.37000.078*
C90.21887 (10)0.6863 (2)0.38804 (14)0.0729 (6)
H90.20300.75670.40070.087*
C100.27306 (10)0.68031 (18)0.38826 (14)0.0693 (5)
H100.29390.74720.40000.083*
C110.29708 (8)0.57504 (16)0.37113 (12)0.0562 (4)
H110.33410.57150.37360.067*
C120.26658 (6)0.47499 (14)0.35030 (10)0.0443 (3)
C130.34445 (6)0.36661 (15)0.30759 (10)0.0440 (3)
H13A0.34910.43750.27320.053*
H13B0.34760.30110.26660.053*
C140.39047 (6)0.35898 (15)0.38957 (11)0.0459 (3)
H140.37630.38310.44560.055*
C150.43718 (7)0.4390 (2)0.37864 (16)0.0689 (5)
H15A0.46590.42540.42850.103*
H15B0.42580.51900.37990.103*
H15C0.44940.42300.32060.103*
C160.43609 (9)0.2099 (2)0.49819 (14)0.0752 (6)
H16A0.44900.13080.50240.113*
H16B0.41140.22110.54140.113*
H16C0.46570.26280.51250.113*
C170.44122 (9)0.1896 (2)0.33280 (17)0.0764 (6)
H17A0.47710.21910.34740.115*
H17B0.42580.21620.27230.115*
H17C0.44190.10570.33370.115*
C180.06195 (8)0.32922 (17)0.12044 (15)0.0622 (5)
C19−0.06629 (6)−0.00127 (16)0.13474 (12)0.0492 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.04465 (17)0.0540 (2)0.0604 (2)0.000−0.00135 (13)0.000
S10.03187 (19)0.0899 (4)0.0813 (3)0.0035 (2)−0.00519 (19)0.0002 (3)
S20.0961 (5)0.0837 (4)0.0981 (5)−0.0315 (4)0.0272 (4)0.0016 (3)
S30.0596 (3)0.0733 (3)0.0717 (3)−0.0168 (2)0.0107 (2)−0.0148 (2)
N10.0407 (6)0.0498 (7)0.0536 (7)−0.0035 (5)0.0078 (5)0.0019 (6)
N20.0304 (5)0.0487 (7)0.0503 (7)−0.0008 (5)0.0087 (5)0.0030 (6)
N30.0354 (6)0.0617 (8)0.0528 (7)0.0017 (6)0.0038 (5)−0.0058 (6)
N40.0690 (11)0.0815 (12)0.0766 (11)−0.0245 (9)−0.0027 (9)0.0100 (10)
N50.0439 (7)0.0615 (9)0.0701 (9)−0.0001 (7)−0.0014 (6)−0.0029 (8)
C20.0628 (10)0.0498 (9)0.0644 (10)−0.0054 (8)0.0108 (8)0.0037 (8)
C30.0728 (12)0.0586 (11)0.0709 (12)−0.0233 (10)0.0218 (10)−0.0009 (9)
C40.0458 (8)0.0757 (12)0.0674 (11)−0.0228 (9)0.0172 (8)−0.0099 (10)
C50.0332 (6)0.0644 (10)0.0484 (8)−0.0073 (7)0.0055 (6)−0.0045 (7)
C60.0326 (6)0.0525 (8)0.0389 (7)−0.0047 (6)0.0054 (5)−0.0021 (6)
C70.0433 (7)0.0657 (10)0.0418 (7)0.0115 (7)0.0031 (6)0.0061 (7)
C80.0597 (10)0.0838 (14)0.0521 (9)0.0296 (10)0.0071 (8)0.0072 (9)
C90.0941 (16)0.0655 (13)0.0572 (11)0.0290 (12)0.0056 (10)0.0009 (9)
C100.0937 (16)0.0514 (10)0.0614 (11)0.0053 (10)0.0066 (10)0.0023 (9)
C110.0585 (10)0.0530 (10)0.0565 (9)−0.0007 (8)0.0066 (8)0.0047 (8)
C120.0431 (7)0.0520 (9)0.0375 (7)0.0056 (6)0.0046 (5)0.0057 (6)
C130.0340 (6)0.0550 (9)0.0448 (7)−0.0025 (6)0.0115 (5)0.0029 (6)
C140.0322 (6)0.0567 (9)0.0495 (8)−0.0044 (6)0.0085 (6)−0.0045 (7)
C150.0421 (8)0.0783 (13)0.0871 (14)−0.0189 (9)0.0116 (9)−0.0023 (11)
C160.0714 (13)0.0858 (15)0.0613 (11)0.0179 (11)−0.0133 (10)−0.0035 (10)
C170.0584 (11)0.0925 (16)0.0811 (14)0.0187 (11)0.0194 (10)−0.0162 (12)
C180.0510 (9)0.0556 (10)0.0757 (12)−0.0121 (8)−0.0049 (9)−0.0033 (9)
C190.0310 (6)0.0614 (10)0.0546 (9)0.0033 (6)0.0048 (6)0.0030 (8)

Geometric parameters (Å, °)

Co1—N4i1.9411 (19)C5—C61.4073 (19)
Co1—N41.9411 (19)C7—C81.389 (3)
Co1—N51.9626 (16)C7—C121.398 (2)
Co1—N5i1.9626 (16)C8—C91.372 (3)
S1—C51.7485 (18)C8—H80.9300
S1—C71.756 (2)C9—C101.369 (3)
S2—C181.607 (2)C9—H90.9300
S3—C191.6102 (19)C10—C111.387 (3)
N1—C61.328 (2)C10—H100.9300
N1—C21.351 (2)C11—C121.387 (2)
N2—C61.390 (2)C11—H110.9300
N2—C121.420 (2)C13—C141.541 (2)
N2—C131.4608 (18)C13—H13A0.9700
N3—C161.487 (2)C13—H13B0.9700
N3—C171.488 (2)C14—C151.519 (2)
N3—C141.516 (2)C14—H140.9800
N3—H3A0.9100C15—H15A0.9600
N4—C181.148 (3)C15—H15B0.9600
N5—C191.157 (2)C15—H15C0.9600
C2—C31.365 (3)C16—H16A0.9600
C2—H20.9300C16—H16B0.9600
C3—C41.378 (3)C16—H16C0.9600
C3—H30.9300C17—H17A0.9600
C4—C51.374 (3)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
N4i—Co1—N4113.17 (13)C8—C9—H9120.1
N4i—Co1—N5110.33 (8)C9—C10—C11120.4 (2)
N4—Co1—N5108.95 (7)C9—C10—H10119.8
N4i—Co1—N5i108.95 (7)C11—C10—H10119.8
N4—Co1—N5i110.33 (8)C10—C11—C12120.80 (19)
N5—Co1—N5i104.78 (9)C10—C11—H11119.6
C5—S1—C799.06 (7)C12—C11—H11119.6
C6—N1—C2118.85 (14)C11—C12—C7118.22 (16)
C6—N2—C12121.00 (12)C11—C12—N2121.74 (14)
C6—N2—C13118.47 (12)C7—C12—N2120.05 (15)
C12—N2—C13118.87 (13)N2—C13—C14116.08 (12)
C16—N3—C17110.70 (16)N2—C13—H13A108.3
C16—N3—C14112.07 (14)C14—C13—H13A108.3
C17—N3—C14114.63 (15)N2—C13—H13B108.3
C16—N3—H3A106.3C14—C13—H13B108.3
C17—N3—H3A106.3H13A—C13—H13B107.4
C14—N3—H3A106.3N3—C14—C15111.28 (14)
C18—N4—Co1172.97 (18)N3—C14—C13109.19 (13)
C19—N5—Co1160.60 (14)C15—C14—C13113.05 (14)
N1—C2—C3122.85 (19)N3—C14—H14107.7
N1—C2—H2118.6C15—C14—H14107.7
C3—C2—H2118.6C13—C14—H14107.7
C2—C3—C4118.25 (18)C14—C15—H15A109.5
C2—C3—H3120.9C14—C15—H15B109.5
C4—C3—H3120.9H15A—C15—H15B109.5
C5—C4—C3120.25 (16)C14—C15—H15C109.5
C5—C4—H4119.9H15A—C15—H15C109.5
C3—C4—H4119.9H15B—C15—H15C109.5
C4—C5—C6118.11 (17)N3—C16—H16A109.5
C4—C5—S1121.32 (13)N3—C16—H16B109.5
C6—C5—S1120.26 (13)H16A—C16—H16B109.5
N1—C6—N2117.76 (12)N3—C16—H16C109.5
N1—C6—C5121.59 (15)H16A—C16—H16C109.5
N2—C6—C5120.64 (14)H16B—C16—H16C109.5
C8—C7—C12120.16 (18)N3—C17—H17A109.5
C8—C7—S1119.17 (14)N3—C17—H17B109.5
C12—C7—S1120.58 (13)H17A—C17—H17B109.5
C9—C8—C7120.63 (19)N3—C17—H17C109.5
C9—C8—H8119.7H17A—C17—H17C109.5
C7—C8—H8119.7H17B—C17—H17C109.5
C10—C9—C8119.72 (19)N4—C18—S2178.86 (19)
C10—C9—H9120.1N5—C19—S3179.38 (17)
N4i—Co1—N5—C19−126.5 (5)S1—C7—C8—C9−173.88 (15)
N4—Co1—N5—C19108.7 (5)C7—C8—C9—C10−1.2 (3)
N5i—Co1—N5—C19−9.4 (4)C8—C9—C10—C11−1.2 (3)
C6—N1—C2—C3−3.0 (3)C9—C10—C11—C122.3 (3)
N1—C2—C3—C42.5 (3)C10—C11—C12—C7−0.9 (3)
C2—C3—C4—C50.3 (3)C10—C11—C12—N2179.22 (16)
C3—C4—C5—C6−2.4 (3)C8—C7—C12—C11−1.5 (2)
C3—C4—C5—S1171.23 (15)S1—C7—C12—C11174.88 (12)
C7—S1—C5—C4151.93 (15)C8—C7—C12—N2178.41 (14)
C7—S1—C5—C6−34.59 (15)S1—C7—C12—N2−5.2 (2)
C2—N1—C6—N2−178.41 (15)C6—N2—C12—C11147.52 (15)
C2—N1—C6—C50.7 (2)C13—N2—C12—C11−17.5 (2)
C12—N2—C6—N1−149.64 (14)C6—N2—C12—C7−32.4 (2)
C13—N2—C6—N115.5 (2)C13—N2—C12—C7162.56 (14)
C12—N2—C6—C531.2 (2)C6—N2—C13—C14−77.11 (18)
C13—N2—C6—C5−163.65 (14)C12—N2—C13—C1488.31 (17)
C4—C5—C6—N11.9 (2)C16—N3—C14—C1577.02 (19)
S1—C5—C6—N1−171.75 (12)C17—N3—C14—C15−50.2 (2)
C4—C5—C6—N2−178.98 (15)C16—N3—C14—C13−157.49 (15)
S1—C5—C6—N27.3 (2)C17—N3—C14—C1375.24 (17)
C5—S1—C7—C8−150.12 (14)N2—C13—C14—N396.79 (16)
C5—S1—C7—C1233.45 (14)N2—C13—C14—C15−138.75 (16)
C12—C7—C8—C92.6 (3)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···N10.911.912.7494 (18)152

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2356).

References

  • Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hudson, R., Carcenac, M., Smith, K., Madden, L., Clarke, O. J., Pèlegrin, A., Greenman, J. & Boyle, R. W. (2005). Br. J. Cancer, 92, 1442–1449. [PMC free article] [PubMed]
  • Shi, J. M., Zhang, F. X., Lu, J. J. & Liu, L. D. (2005). Acta Cryst. E61, m1181–m1182.
  • Kinnamon, K. E., Klayman, D. L., Poon, B. T., McCall, J. W., Dzimianski, M. T. & Rowan, S. J. (1994). Am. J. Trop. Med. Hyg.51, 791–796. [PubMed]
  • Moreau, A., Dompmartin, A., Dubreuil, A. & Leroy, D. (1995). Photodermatol. Photoimmunol. Photomed.11, 50–54. [PubMed]
  • Scott, J., Quirke, J. M., Vreman, H. J., Stevenson, D. K. & Downum, K. R. (1990). J. Photochem. Photobiol. B, 7, 149–157. [PubMed]
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography