PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1677.
Published online 2010 June 16. doi:  10.1107/S1600536810022233
PMCID: PMC3006699

Conformation and absolute configuration of (1S,2S)-2-(phenyl­selan­yl)cyclo­hexyl (R)-2-meth­oxy-2-(1-naphth­yl)propionate

Abstract

The relative and absolute configurations of the title compound, C26H28O3Se, were assigned from the known configuration of (R)-(−)-2-meth­oxy-2-(1-naphth­yl)propionic acid used as starting material, and by examination of the Bijvoet (Friedel) pairs, using the anomalous dispersion data collected with Mo Kα radiation at low temperature. The geometry around the carbonyl group exists in the syn conformation, as reflected in torsion angles involving this group, and the stability of the structure is affected by weak bifurcated intra­molecular C—H(...)O hydrogen bonds.

Related literature

For general background to the crystalline-state analysis of 2-meth­oxy-2-(1-naphth­yl)propionic acid ester, see: Kuwahara et al. (2007 [triangle]). For synthetic details, see: Detty (1980 [triangle]); Izumi et al. (1993 [triangle]); Harada et al. (2000 [triangle]). For Bijvoet pairs analysis, see: Hooft et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1677-scheme1.jpg

Experimental

Crystal data

  • C26H28O3Se
  • M r = 467.44
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1677-efi1.jpg
  • a = 7.5714 (3) Å
  • b = 15.9740 (7) Å
  • c = 18.2994 (8) Å
  • V = 2213.23 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.72 mm−1
  • T = 115 K
  • 0.30 × 0.10 × 0.08 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.827, T max = 1.000
  • 21509 measured reflections
  • 5060 independent reflections
  • 4749 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.055
  • S = 1.06
  • 5060 reflections
  • 274 parameters
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.31 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2178 Friedel pairs
  • Flack parameter: −0.015 (6)

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2003 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: Yadokari-XG (Wakita, 2001 [triangle]; Kabuto et al., 2009 [triangle]).

Table 1
Selected torsion angles (°)
Table 2
Geometry of the weak bifurcated intra­molecular C—H(...)O hydrogen bonds (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022233/bh2291sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022233/bh2291Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Masataka Watanabe and Emeritus Professor Taeko Izumi for professional support.

supplementary crystallographic information

Comment

Previously, Izumi group presented a chemoenzymatic synthesis of optically pure (R)- and (S)-2-cyclohexen-1-ols (Izumi et al., 1993). However, the preparation and determination of the absolute configurations of such kind of aliphatic alcohols still has been difficult and important topic. The MαNP [2-methoxy-2-(1-naphthyl)- propionic] acid method is an attractive approach for the preparation of enantiopure alcohols and the determination of their absolute configurations by 1H NMR anisotropy or X-ray crystallography (Harada et al., 2000). Recent systematic X-ray crystallographic analysis of MαNP acid esters with various alcohols has shown that most prefer the syn/syn conformation (the so-called "syn" conformation) (Kuwahara et al., 2007). On the other hand, although selenium has a large f"-value (Δf"=2.223 for Mo Kα radiation), which promises a large anomalous scattering effect, MαNP acid esters including a Se atom have not been investigated by X-ray analysis. The structural properties and determination of the absolute configuration of such compounds are important for the development of this methodology.

We report here the conformation and absolute configuration of (R)-2-methoxy-2-(1-naphthyl)-propionic acid (1S,2S)-2-(phenylseleno)-cyclohexyl ester. Hydrolysis of this compound gives (+)-trans-2-(phenylseleno)-cyclohexan-1-ol, in which an olefin-forming syn elimination of phenyl selenoxide forms 2-cyclohexen-1-ol, whose optically active forms are especially useful in the asymmetric synthesis of terpenes and other natural products.

The crystal structure of the title compound (Fig. 1) showed the following torsion angles: O1—C1—C3—O2, -17.1 (2)°; O2—C3—O3—C14, -2.8 (2)°; C1—C3—O3—O14, 174.70 (13)°; and H14—C14—O3—C3, -27°. These angles indicate that the geometry around the carbonyl group takes the syn conformation (Table 1, Fig. 2). Moreover, weak bifurcated intramolecular hydrogen bonds in O1···H12···O2 showed a triangular shape (Table 2, Fig. 3). These structural properties are similar to those of most MαNP acid esters (Kuwahara et al., 2007). The absolute structure was determined from the known configuration of MαNP, as supported by the refined Flack χ parameter and the Bijvoet pairs analysis of Hooft et al. (2008) performed with the PLATON program (Spek, 2009). The P2 parameter was 1.000 and the Hooft y parameter was -0.013. The plot of 1927 Bijvoet pairs in Fig. 4 suggests that the absolute configuration could be determined with a high confidence.

Experimental

To a mixture of enantiopure (R)-(–)-MαNP acid (4.04 mmol), 4-dimethylaminopyridine (DMAP, 2.45 mmol), (±)-trans-2-(phenylseleno)-cyclohexan-1-ol (Detty, 1980) (2.96 mmol), and N,N'-diisopropyl-carbodiimide guanidine (DIC, 8.23 mmol) in CH2Cl2 (6.4 ml) cooled at 273 K was added 10-camphorsulfonic acid (CSA, 0.49 mmol), and the mixture was stirred at room temperature overnight. After addition of water (0.5 ml), the mixture was stirred for 1 h, diluted with EtOAc, and filtered with Celite, which was washed with EtOAc. The organic layer was evaporated under reduced pressure, and the residue was subjected to short column chromatography on silica gel (EtOAc). The crude diastereomeric esters obtained were separated by HPLC on silica gel (hexane/EtOAc = 30:1) giving the title compound as a second-eluted ester in 48.5% yield (colorless). [α]D22 67.746 (c 1.42, CHCl3), mp = 405–406 K. Crystals suitable for X-ray diffraction were grown by slow solvent/solvent diffusion of hexane into ethyl acetate. IR (KBr): ν[cm-1] 2941, 1447 (alkane), 1739 (ester CO), 1136, 1055, 1022, 785 (mono substituted benzene) 1H NMR (400 MHz, CDCl3): δ[p.p.m.] 0.67–1.96 (m, 8H) 2.03 (s, 3H) 2.90(ddd, 1H, J = 10.07, 10.07 and 4.12 Hz) 3.07 (s, 3H) 4.78 (ddd, 1H, J = 9.62, 9.62 and 4.12 Hz) 7.22–7.30 (m, 1H) 7.44–7.49 (m, 5H) 7.57–7.59 (m, 3H) 7.83–7.87(m, 1H) 8.42–8.46 (m, 2H). 13C NMR (100 MHz, CDCl3): δ [p.p.m.] 21.5, 23.1, 25.4, 30.6, 32.5, 45.5, 50.8, 75.3, 81.4, 124.5, 125.4, 125.7, 125.9, 126.4, 127.5, 128.9, 129.4, 131.4, 134.0, 134.9, 135.0, 173.5 Anal. Calcd. for C26H28O3Se: C 66.8, H 5.99%. Found: C 66.71, H 6.08%.

Refinement

In the refinement of the title compound, the H atoms were calculated geometrically and refined as riding, with C—H bond lengths of 0.95–1.00 Å, and with Uiso(H) values of 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. H atoms are shown as spheres.
Fig. 2.
The preferred conformation of (R)-MαNP acid ester, adopting syn/syn conformation (i.e., the so-called syn conformation).
Fig. 3.
The weak bifurcated intramolecular C—H···O hydrogen bonds, stabilizing the syn conformation.
Fig. 4.
A scatter plot of Bijvoet differences, prepared using the program PLATON (Spek, 2009). Shown are 1927 pairs where Δobs > 0.25σ(Δobs). 1750 reflections confirming the absolute structure are shown in black. 177 reflections ...

Crystal data

C26H28O3SeDx = 1.403 Mg m3
Mr = 467.44Melting point: 405 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ac 2abCell parameters from 19734 reflections
a = 7.5714 (3) Åθ = 3.2–27.5°
b = 15.9740 (7) ŵ = 1.72 mm1
c = 18.2994 (8) ÅT = 115 K
V = 2213.23 (16) Å3Plate, colourless
Z = 40.30 × 0.10 × 0.08 mm
F(000) = 968

Data collection

Rigaku R-AXIS RAPID diffractometer5060 independent reflections
Radiation source: rotating anode4749 reflections with I > 2σ(I)
graphiteRint = 0.032
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −8→9
Tmin = 0.827, Tmax = 1.000k = −20→20
21509 measured reflectionsl = −23→23

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024w = 1/[σ2(Fo2) + (0.0284P)2 + 0.3422P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.055(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.47 e Å3
5060 reflectionsΔρmin = −0.31 e Å3
274 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0023 (4)
0 constraintsAbsolute structure: Flack (1983), 2178 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.015 (6)
Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.1779 (2)0.23902 (10)0.24894 (9)0.0192 (3)
O1−0.33156 (17)0.20184 (7)0.21696 (7)0.0228 (3)
C2−0.4470 (2)0.25838 (13)0.18042 (10)0.0287 (4)
H2−0.50340.29520.21630.043*
H2A−0.53780.22670.15420.043*
H2B−0.37920.29220.14560.043*
C3−0.0844 (2)0.16503 (11)0.28614 (9)0.0186 (4)
O2−0.15312 (17)0.09919 (8)0.29975 (7)0.0268 (3)
O30.08202 (16)0.18555 (8)0.30378 (7)0.0188 (3)
C4−0.0564 (2)0.27792 (10)0.19115 (9)0.0174 (3)
C5−0.0072 (2)0.36005 (11)0.19467 (10)0.0216 (4)
H5−0.05320.39390.23290.026*
C60.1098 (3)0.39644 (12)0.14346 (11)0.0243 (4)
H60.14050.45390.14720.029*
C70.1782 (3)0.34865 (11)0.08873 (10)0.0236 (4)
H70.25700.37300.05440.028*
C80.1328 (2)0.26292 (12)0.08248 (9)0.0204 (4)
C90.2077 (2)0.21244 (13)0.02694 (10)0.0264 (4)
H90.28790.2367−0.00690.032*
C100.1665 (3)0.12967 (13)0.02130 (10)0.0308 (4)
H100.21970.0963−0.01560.037*
C110.0448 (3)0.09373 (12)0.07026 (11)0.0286 (4)
H110.01490.03620.06570.034*
C12−0.0308 (3)0.14082 (11)0.12443 (10)0.0227 (4)
H12−0.11330.11550.15670.027*
C130.0117 (2)0.22675 (10)0.13327 (9)0.0181 (4)
C140.1779 (3)0.12243 (10)0.34533 (9)0.0174 (3)
H140.09140.08800.37360.021*
C150.2795 (3)0.06561 (11)0.29373 (10)0.0241 (4)
H150.36700.09880.26590.029*
H15A0.19720.03930.25850.029*
C160.3739 (3)−0.00205 (12)0.33817 (11)0.0259 (4)
H160.2852−0.03820.36240.031*
H16A0.4451−0.03750.30500.031*
C170.4935 (2)0.03679 (11)0.39562 (12)0.0262 (4)
H170.59160.06670.37120.031*
H17A0.5451−0.00810.42620.031*
C180.3924 (2)0.09780 (11)0.44410 (10)0.0225 (4)
H180.47500.12440.47900.027*
H18A0.30240.06680.47260.027*
C190.3018 (2)0.16562 (10)0.39842 (10)0.0190 (4)
H190.39370.19660.37000.023*
Se10.17856 (2)0.245122 (11)0.462912 (9)0.02078 (6)
C200.2786 (2)0.34792 (11)0.42811 (11)0.0191 (4)
C210.2687 (3)0.37120 (12)0.35488 (11)0.0246 (4)
H210.21710.33450.32010.030*
C220.3347 (3)0.44831 (12)0.33294 (11)0.0305 (4)
H220.32820.46400.28290.037*
C230.4096 (3)0.50226 (12)0.38291 (14)0.0335 (5)
H230.45540.55470.36740.040*
C240.4177 (3)0.47954 (12)0.45598 (13)0.0324 (5)
H240.46830.51680.49060.039*
C250.3522 (2)0.40256 (12)0.47872 (11)0.0251 (4)
H250.35770.38730.52880.030*
C26−0.2293 (2)0.29874 (12)0.31135 (11)0.0251 (4)
H26−0.29460.34650.29140.038*
H26A−0.12230.31880.33590.038*
H26B−0.30380.26900.34660.038*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0175 (7)0.0183 (8)0.0218 (7)0.0003 (8)−0.0016 (7)0.0013 (7)
O10.0186 (6)0.0210 (6)0.0289 (7)−0.0014 (5)−0.0043 (6)0.0050 (5)
C20.0237 (8)0.0292 (10)0.0333 (10)0.0021 (9)−0.0057 (8)0.0075 (9)
C30.0207 (9)0.0206 (9)0.0143 (8)0.0009 (7)0.0011 (7)0.0005 (7)
O20.0241 (7)0.0237 (6)0.0325 (7)−0.0049 (6)−0.0031 (6)0.0113 (6)
O30.0201 (6)0.0158 (6)0.0205 (6)−0.0010 (5)−0.0023 (5)0.0041 (5)
C40.0175 (8)0.0175 (8)0.0172 (8)0.0013 (6)−0.0035 (7)0.0027 (6)
C50.0244 (9)0.0185 (8)0.0220 (9)0.0014 (7)−0.0036 (7)0.0006 (7)
C60.0274 (10)0.0155 (8)0.0301 (10)−0.0036 (7)−0.0042 (8)0.0065 (8)
C70.0209 (8)0.0261 (9)0.0239 (9)−0.0056 (8)−0.0013 (8)0.0068 (7)
C80.0187 (7)0.0240 (9)0.0184 (8)0.0009 (7)−0.0033 (6)0.0032 (7)
C90.0225 (9)0.0364 (10)0.0202 (9)−0.0006 (8)0.0012 (8)0.0004 (8)
C100.0321 (10)0.0375 (11)0.0227 (10)0.0045 (9)0.0012 (9)−0.0100 (8)
C110.0377 (11)0.0210 (9)0.0271 (10)0.0006 (9)−0.0027 (9)−0.0054 (8)
C120.0261 (9)0.0201 (9)0.0219 (9)−0.0001 (7)−0.0019 (8)0.0012 (7)
C130.0184 (8)0.0194 (9)0.0164 (8)0.0007 (6)−0.0049 (6)0.0017 (6)
C140.0208 (8)0.0137 (7)0.0176 (8)0.0009 (8)−0.0005 (8)0.0029 (6)
C150.0333 (11)0.0176 (8)0.0214 (9)0.0015 (7)0.0042 (8)−0.0011 (7)
C160.0321 (10)0.0177 (9)0.0278 (10)0.0050 (8)0.0063 (8)0.0016 (8)
C170.0210 (9)0.0188 (9)0.0388 (11)0.0035 (7)0.0008 (8)0.0032 (8)
C180.0216 (9)0.0194 (9)0.0266 (10)0.0011 (7)−0.0058 (8)0.0002 (7)
C190.0180 (8)0.0169 (8)0.0220 (9)0.0021 (7)0.0002 (8)−0.0001 (7)
Se10.02435 (9)0.01706 (8)0.02093 (8)−0.00017 (8)0.00258 (7)−0.00066 (8)
C200.0170 (9)0.0138 (8)0.0266 (10)0.0032 (6)0.0016 (7)−0.0002 (7)
C210.0245 (10)0.0234 (9)0.0259 (10)0.0015 (7)0.0009 (8)−0.0025 (8)
C220.0319 (11)0.0271 (9)0.0326 (11)0.0027 (9)0.0080 (10)0.0058 (8)
C230.0301 (10)0.0173 (9)0.0530 (14)−0.0004 (8)0.0083 (11)0.0021 (9)
C240.0274 (10)0.0197 (9)0.0500 (14)−0.0010 (7)−0.0004 (10)−0.0113 (9)
C250.0232 (9)0.0230 (9)0.0289 (11)0.0030 (7)−0.0027 (8)−0.0043 (7)
C260.0246 (9)0.0261 (10)0.0246 (10)0.0028 (7)0.0032 (8)−0.0010 (8)

Geometric parameters (Å, °)

C1—O11.431 (2)C14—H141.0000
C1—C41.533 (2)C15—C161.530 (3)
C1—C31.537 (2)C15—H150.9900
C1—C261.538 (2)C15—H15A0.9900
O1—C21.424 (2)C16—C171.520 (3)
C2—H20.9800C16—H160.9900
C2—H2A0.9800C16—H16A0.9900
C2—H2B0.9800C17—C181.524 (3)
C3—O21.199 (2)C17—H170.9900
C3—O31.341 (2)C17—H17A0.9900
O3—C141.457 (2)C18—C191.531 (2)
C4—C51.365 (2)C18—H180.9900
C4—C131.434 (2)C18—H18A0.9900
C5—C61.415 (3)C19—Se11.9688 (17)
C5—H50.9500C19—H191.0000
C6—C71.362 (3)Se1—C201.9172 (18)
C6—H60.9500C20—C251.389 (3)
C7—C81.416 (2)C20—C211.393 (3)
C7—H70.9500C21—C221.389 (3)
C8—C91.416 (3)C21—H210.9500
C8—C131.428 (2)C22—C231.378 (3)
C9—C101.362 (3)C22—H220.9500
C9—H90.9500C23—C241.387 (3)
C10—C111.407 (3)C23—H230.9500
C10—H100.9500C24—C251.390 (3)
C11—C121.370 (3)C24—H240.9500
C11—H110.9500C25—H250.9500
C12—C131.419 (2)C26—H260.9800
C12—H120.9500C26—H26A0.9800
C14—C191.516 (2)C26—H26B0.9800
C14—C151.519 (2)
O1—C1—C4111.94 (13)C14—C15—H15109.8
O1—C1—C3103.67 (13)C16—C15—H15109.8
C4—C1—C3109.94 (13)C14—C15—H15A109.8
O1—C1—C26110.80 (13)C16—C15—H15A109.8
C4—C1—C26114.38 (14)H15—C15—H15A108.3
C3—C1—C26105.35 (14)C17—C16—C15110.95 (15)
C2—O1—C1115.32 (13)C17—C16—H16109.4
O1—C2—H2109.5C15—C16—H16109.4
O1—C2—H2A109.5C17—C16—H16A109.4
H2—C2—H2A109.5C15—C16—H16A109.4
O1—C2—H2B109.5H16—C16—H16A108.0
H2—C2—H2B109.5C16—C17—C18111.37 (15)
H2A—C2—H2B109.5C16—C17—H17109.4
O2—C3—O3124.87 (16)C18—C17—H17109.4
O2—C3—C1124.52 (16)C16—C17—H17A109.4
O3—C3—C1110.56 (14)C18—C17—H17A109.4
C3—O3—C14115.12 (13)H17—C17—H17A108.0
C5—C4—C13118.98 (16)C17—C18—C19111.08 (16)
C5—C4—C1121.36 (16)C17—C18—H18109.4
C13—C4—C1119.63 (15)C19—C18—H18109.4
C4—C5—C6122.31 (18)C17—C18—H18A109.4
C4—C5—H5118.8C19—C18—H18A109.4
C6—C5—H5118.8H18—C18—H18A108.0
C7—C6—C5119.67 (17)C14—C19—C18107.76 (14)
C7—C6—H6120.2C14—C19—Se1112.61 (12)
C5—C6—H6120.2C18—C19—Se1109.97 (12)
C6—C7—C8120.62 (17)C14—C19—H19108.8
C6—C7—H7119.7C18—C19—H19108.8
C8—C7—H7119.7Se1—C19—H19108.8
C9—C8—C7120.77 (16)C20—Se1—C1999.56 (8)
C9—C8—C13119.60 (17)C25—C20—C21119.68 (18)
C7—C8—C13119.63 (17)C25—C20—Se1118.37 (15)
C10—C9—C8121.02 (18)C21—C20—Se1121.81 (14)
C10—C9—H9119.5C22—C21—C20119.72 (19)
C8—C9—H9119.5C22—C21—H21120.1
C9—C10—C11119.84 (18)C20—C21—H21120.1
C9—C10—H10120.1C23—C22—C21120.7 (2)
C11—C10—H10120.1C23—C22—H22119.6
C12—C11—C10120.69 (18)C21—C22—H22119.6
C12—C11—H11119.7C22—C23—C24119.61 (19)
C10—C11—H11119.7C22—C23—H23120.2
C11—C12—C13121.24 (18)C24—C23—H23120.2
C11—C12—H12119.4C23—C24—C25120.29 (19)
C13—C12—H12119.4C23—C24—H24119.9
C12—C13—C8117.59 (16)C25—C24—H24119.9
C12—C13—C4123.63 (16)C20—C25—C24119.97 (19)
C8—C13—C4118.76 (16)C20—C25—H25120.0
O3—C14—C19109.13 (13)C24—C25—H25120.0
O3—C14—C15109.97 (14)C1—C26—H26109.5
C19—C14—C15110.91 (16)C1—C26—H26A109.5
O3—C14—H14108.9H26—C26—H26A109.5
C19—C14—H14108.9C1—C26—H26B109.5
C15—C14—H14108.9H26—C26—H26B109.5
C14—C15—C16109.16 (15)H26A—C26—H26B109.5
C4—C1—O1—C2−63.60 (18)C9—C8—C13—C4177.18 (15)
C3—C1—O1—C2177.95 (14)C7—C8—C13—C4−2.1 (2)
C26—C1—O1—C265.38 (19)C5—C4—C13—C12−179.93 (17)
O1—C1—C3—O2−17.1 (2)C1—C4—C13—C121.9 (2)
C4—C1—C3—O2−136.89 (18)C5—C4—C13—C81.8 (2)
C26—C1—C3—O299.4 (2)C1—C4—C13—C8−176.35 (14)
O1—C1—C3—O3165.38 (13)C3—O3—C14—C19−145.77 (15)
C4—C1—C3—O345.56 (18)C3—O3—C14—C1592.36 (17)
C26—C1—C3—O3−78.15 (17)O3—C14—C15—C16−178.00 (14)
O2—C3—O3—C14−2.8 (2)C19—C14—C15—C1661.19 (19)
C1—C3—O3—C14174.70 (13)C14—C15—C16—C17−56.3 (2)
O1—C1—C4—C5124.21 (17)C15—C16—C17—C1854.3 (2)
C3—C1—C4—C5−121.13 (18)C16—C17—C18—C19−55.9 (2)
C26—C1—C4—C5−2.9 (2)O3—C14—C19—C18176.81 (14)
O1—C1—C4—C13−57.72 (19)C15—C14—C19—C18−61.88 (19)
C3—C1—C4—C1356.94 (19)O3—C14—C19—Se155.36 (16)
C26—C1—C4—C13175.21 (15)C15—C14—C19—Se1176.66 (11)
C13—C4—C5—C6−0.4 (3)C17—C18—C19—C1458.60 (19)
C1—C4—C5—C6177.64 (16)C17—C18—C19—Se1−178.31 (12)
C4—C5—C6—C7−0.5 (3)C14—C19—Se1—C20−113.12 (12)
C5—C6—C7—C80.2 (3)C18—C19—Se1—C20126.70 (13)
C6—C7—C8—C9−178.12 (17)C19—Se1—C20—C25−128.14 (14)
C6—C7—C8—C131.2 (3)C19—Se1—C20—C2156.15 (16)
C7—C8—C9—C10179.07 (18)C25—C20—C21—C220.9 (3)
C13—C8—C9—C10−0.2 (3)Se1—C20—C21—C22176.54 (15)
C8—C9—C10—C111.4 (3)C20—C21—C22—C23−0.2 (3)
C9—C10—C11—C12−1.0 (3)C21—C22—C23—C24−0.5 (3)
C10—C11—C12—C13−0.5 (3)C22—C23—C24—C250.5 (3)
C11—C12—C13—C81.6 (3)C21—C20—C25—C24−0.9 (3)
C11—C12—C13—C4−176.73 (17)Se1—C20—C25—C24−176.69 (14)
C9—C8—C13—C12−1.2 (2)C23—C24—C25—C200.2 (3)
C7—C8—C13—C12179.46 (16)H14—C14—O3—C3−27

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.523.417 (2)158
C12—H12···O10.952.423.001 (2)119
C14—H14···O21.002.302.667 (3)100
C17—H17···O2ii0.992.393.351 (2)163
C18—H18···Se1iii0.992.803.7264 (17)156

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x+1, y, z; (iii) x+1/2, −y+1/2, −z+1.

Table 2 Geometry of the weak bifurcated intramolecular C—H···O hydrogen bonds (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12···O10.952.423.000 (1)119
C12—H12···O20.952.653.405 (2)137

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2291).

References

  • Detty, M. R. (1980). J. Org. Chem.45, 274–279.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Harada, N., Watanabe, M., Kuwahara, S., Sugio, A., Kasai, Y. & Ichikawa, A. (2000). Tetrahedron Asymmetry, 11, 1249–1253.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst.41, 96–103. [PMC free article] [PubMed]
  • Izumi, T., Nakamura, T. & Eda, Y. (1993). J. Chem. Technol. Biotechnol.57, 175–180.
  • Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.
  • Kuwahara, S., Naito, J., Yamamoto, Y., Kasai, Y., Fujita, T., Noro, K., Shimanuki, K., Akagi, M., Watanabe, M., Matsumoto, T., Watanabe, M., Ichikawa, A. & Harada, N. (2007). Eur. J. Org. Chem.11, 1827–1840.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2003). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wakita, K. (2001). Yadokari-XG Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography