PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1853.
Published online 2010 June 30. doi:  10.1107/S1600536810024761
PMCID: PMC3006698

6,7-Dihydro-3H-1,4-diazepino[1,2,3,4-lmn][1,10]phenanthroline-3,9(5H)-dione

Abstract

In the title compound, C15H12N2O2, the seven-membered ring bearing the three methyl­ene C atoms displays a puckered conformation, with the methyl­ene C atoms deviating from the plane of the benzene ring by 0.05 (1), 0.98 (1) and 1.04 (1) Å. The phenanthroline unit is not planar; the dihedral angles between this benzene ring and the other pyridyl rings are 9.62 (4) and 9.31 (4)°. The crystal packing is stabilized by π–π inter­actions between two phenanthroline ring systems, forming a centrosymmetric dimer with a centroid–centroid distance of 3.656 (1) Å.

Related literature

For background to π–π inter­actions in supra­molecular chemistry, see: Sisson et al. (2006 [triangle]). For a related structure, see: Nadeem et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1853-scheme1.jpg

Experimental

Crystal data

  • C15H12N2O2
  • M r = 252.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1853-efi1.jpg
  • a = 9.1853 (18) Å
  • b = 13.931 (3) Å
  • c = 9.4956 (19) Å
  • β = 111.14 (3)°
  • V = 1133.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 158 K
  • 0.50 × 0.46 × 0.38 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (REQAB; Jacobson, 1998 [triangle]) T min = 0.952, T max = 0.963
  • 8367 measured reflections
  • 2309 independent reflections
  • 2115 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.111
  • S = 1.06
  • 2309 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810024761/ng2793sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024761/ng2793Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Pakistan Science Foundation for financial support.

supplementary crystallographic information

Comment

In supramolecular chemistry it is well establish that the self-association of individual molecules can lead to the formation of highly complex and fascinating supramolecular assemblies if π–π interactions contribute to the formation of specific motifs (Sisson et al., 2006). As a part of our ongoing investigation on the nature of π-π (Nadeem et al., 2009) stacking and supramolecular chemistry, the title compound (Figure-1), has been prepared and its crystal structure is reported here. The crystal packing is stabilized by π-π interactions between two phenanthroline ring systems forming a centrosymmetric dimer with a centroid···centroid distance of 3.656 (1) Å. A typical double bond distance 1.236 (2) Å was observed for C1—O1 C8—O2 while a characteristic single bond distances 1.386 (1) Å and 1.393 (1) Å were observed for C1—N1 and C8—N2 respectively.

Experimental

To an ice-cooled solution of potassium hexacyanoferrate(III) (58.6g) and sodium hydroxide (26.8g) in water (100ml) were added in small portions a solution of 6,7-dihydro-5H-[1,4]diazepino[1,2,3,4-lmn][1,10]phenanthroline-4,8-diium bromide (7.6g) in water (50ml),maintaining the temperature under 278 K for 10 minutes. The resulting mixture was neutralized by a dropwise addition of concentrated hydrochloric acid at 273 K. The residual brown pasty material was extracted three times with chloroform, subjected to column chromatography (DCM:MeOH; 100ml:1ml v/v), evaporated to dryness, recrystallization from methanol afforded 1.5g (30%) of title compound as pale yellow needles.

Refinement

The H atoms were geometrically placed and treated as riding atoms with C—H = 0.96 Å, and Uiso(H) = 1.2 Ueq (parent C-atom).

Figures

Fig. 1.
Molecular Structure of (I) with atom labels and 50% probability displacement ellipsoids.

Crystal data

C15H12N2O2F(000) = 528
Mr = 252.27Dx = 1.478 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1853 (18) ÅCell parameters from 3526 reflections
b = 13.931 (3) Åθ = 2.7–26.4°
c = 9.4956 (19) ŵ = 0.10 mm1
β = 111.14 (3)°T = 158 K
V = 1133.3 (4) Å3Chip, yellow
Z = 40.50 × 0.46 × 0.38 mm

Data collection

Rigaku Mercury CCD diffractometer2309 independent reflections
Radiation source: Sealed Tube2115 reflections with I > 2σ(I)
Graphite MonochromatorRint = 0.016
Detector resolution: 14.6306 pixels mm-1θmax = 26.4°, θmin = 2.7°
ω scansh = −11→9
Absorption correction: multi-scan (REQAB; Jacobson, 1998)k = −17→17
Tmin = 0.952, Tmax = 0.963l = −10→11
8367 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0632P)2 + 0.3698P] where P = (Fo2 + 2Fc2)/3
2309 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N11.02892 (11)0.14451 (7)0.36246 (11)0.0183 (2)
N20.79115 (11)0.11065 (7)0.06165 (11)0.0186 (2)
O11.09796 (11)0.14573 (7)0.61843 (10)0.0313 (2)
O20.53670 (10)0.10333 (7)−0.09893 (10)0.0285 (2)
C11.13585 (14)0.13175 (9)0.50775 (13)0.0219 (3)
C21.29358 (14)0.10579 (9)0.52135 (13)0.0239 (3)
H21.36940.09110.61900.029*
C31.33514 (14)0.10204 (9)0.39944 (14)0.0234 (3)
H31.44230.09050.41280.028*
C3A1.22264 (13)0.11496 (8)0.24970 (13)0.0193 (3)
C41.26651 (14)0.11749 (8)0.12166 (14)0.0228 (3)
H41.37350.10750.13280.027*
C51.15645 (14)0.13419 (9)−0.01825 (13)0.0223 (3)
H51.18790.1443−0.10320.027*
C5A0.99677 (14)0.13661 (8)−0.03786 (13)0.0197 (3)
C60.87822 (15)0.14730 (9)−0.18533 (13)0.0238 (3)
H60.90790.1576−0.27130.029*
C70.72644 (15)0.14297 (9)−0.20391 (13)0.0250 (3)
H70.64970.1561−0.30180.030*
C80.67481 (14)0.11909 (8)−0.08064 (14)0.0216 (3)
C8A0.94915 (13)0.12578 (8)0.08617 (13)0.0171 (3)
C8B1.06584 (13)0.12776 (8)0.23397 (13)0.0170 (2)
C90.74874 (13)0.06207 (8)0.17982 (13)0.0216 (3)
H9A0.82410.01290.22590.026*
H9B0.64880.03180.13410.026*
C100.74195 (14)0.13128 (9)0.30056 (14)0.0239 (3)
H10A0.74050.09610.38690.029*
H10B0.64830.16890.26250.029*
C110.88345 (13)0.19676 (8)0.34603 (13)0.0209 (3)
H11A0.86670.24600.27120.025*
H11B0.89500.22730.44010.025*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0176 (5)0.0208 (5)0.0166 (5)0.0005 (4)0.0063 (4)0.0000 (4)
N20.0164 (5)0.0197 (5)0.0181 (5)−0.0012 (4)0.0044 (4)0.0005 (4)
O10.0303 (5)0.0472 (6)0.0171 (4)0.0023 (4)0.0094 (4)0.0011 (4)
O20.0179 (4)0.0298 (5)0.0316 (5)−0.0017 (3)0.0015 (4)0.0023 (4)
C10.0220 (6)0.0245 (6)0.0178 (5)−0.0021 (4)0.0055 (4)0.0008 (4)
C20.0206 (6)0.0270 (6)0.0194 (5)−0.0007 (5)0.0016 (4)0.0024 (4)
C30.0165 (5)0.0260 (6)0.0250 (6)0.0013 (4)0.0040 (5)0.0009 (5)
C3A0.0183 (6)0.0187 (5)0.0204 (6)−0.0006 (4)0.0065 (4)−0.0011 (4)
C40.0201 (6)0.0238 (6)0.0267 (6)−0.0010 (4)0.0112 (5)−0.0032 (5)
C50.0255 (6)0.0229 (6)0.0220 (6)−0.0029 (5)0.0130 (5)−0.0027 (4)
C5A0.0228 (6)0.0174 (5)0.0189 (5)−0.0016 (4)0.0077 (5)−0.0009 (4)
C60.0296 (6)0.0231 (6)0.0177 (6)−0.0016 (5)0.0073 (5)−0.0001 (4)
C70.0264 (6)0.0248 (6)0.0180 (5)0.0000 (5)0.0011 (5)0.0005 (4)
C80.0202 (6)0.0172 (5)0.0231 (6)−0.0003 (4)0.0026 (5)−0.0009 (4)
C8A0.0174 (5)0.0151 (5)0.0189 (6)−0.0007 (4)0.0065 (4)−0.0005 (4)
C8B0.0177 (6)0.0157 (5)0.0176 (5)−0.0007 (4)0.0063 (4)0.0001 (4)
C90.0188 (5)0.0225 (6)0.0236 (6)−0.0034 (4)0.0077 (4)0.0019 (4)
C100.0195 (6)0.0290 (6)0.0254 (6)−0.0010 (5)0.0107 (5)0.0003 (5)
C110.0190 (5)0.0226 (6)0.0216 (5)0.0019 (4)0.0081 (4)−0.0011 (4)

Geometric parameters (Å, °)

N1—C11.3866 (16)C5—C5A1.4107 (17)
N1—C8B1.3987 (15)C5—H50.9600
N1—C111.4795 (14)C5A—C8A1.4044 (16)
N2—C81.3929 (16)C5A—C61.4385 (17)
N2—C8A1.4005 (15)C6—C71.3420 (18)
N2—C91.4779 (14)C6—H60.9600
O1—C11.2358 (15)C7—C81.4512 (18)
O2—C81.2364 (15)C7—H70.9600
C1—C21.4531 (17)C8A—C8B1.4264 (17)
C2—C31.3443 (17)C9—C101.5165 (17)
C2—H20.9600C9—H9A0.9600
C3—C3A1.4361 (17)C9—H9B0.9600
C3—H30.9600C10—C111.5176 (16)
C3A—C8B1.4048 (16)C10—H10A0.9600
C3A—C41.4124 (17)C10—H10B0.9600
C4—C51.3684 (18)C11—H11A0.9600
C4—H40.9600C11—H11B0.9600
C1—N1—C8B122.61 (10)C6—C7—C8122.03 (11)
C1—N1—C11117.18 (10)C6—C7—H7119.0
C8B—N1—C11118.94 (9)C8—C7—H7119.0
C8—N2—C8A122.35 (10)O2—C8—N2120.71 (11)
C8—N2—C9117.07 (9)O2—C8—C7123.00 (11)
C8A—N2—C9118.93 (9)N2—C8—C7116.25 (11)
O1—C1—N1120.68 (11)N2—C8A—C5A119.61 (10)
O1—C1—C2122.76 (11)N2—C8A—C8B122.17 (10)
N1—C1—C2116.50 (10)C5A—C8A—C8B118.19 (11)
C3—C2—C1121.12 (11)N1—C8B—C3A119.36 (10)
C3—C2—H2119.4N1—C8B—C8A121.94 (10)
C1—C2—H2119.4C3A—C8B—C8A118.68 (11)
C2—C3—C3A121.42 (11)N2—C9—C10112.13 (10)
C2—C3—H3119.3N2—C9—H9A109.2
C3A—C3—H3119.3C10—C9—H9A109.2
C8B—C3A—C4120.34 (11)N2—C9—H9B109.2
C8B—C3A—C3117.73 (11)C10—C9—H9B109.2
C4—C3A—C3121.91 (11)H9A—C9—H9B107.9
C5—C4—C3A119.98 (11)C9—C10—C11109.44 (9)
C5—C4—H4120.0C9—C10—H10A109.8
C3A—C4—H4120.0C11—C10—H10A109.8
C4—C5—C5A120.08 (11)C9—C10—H10B109.8
C4—C5—H5120.0C11—C10—H10B109.8
C5A—C5—H5120.0H10A—C10—H10B108.2
C8A—C5A—C5120.67 (11)N1—C11—C10112.49 (10)
C8A—C5A—C6118.17 (11)N1—C11—H11A109.1
C5—C5A—C6121.14 (11)C10—C11—H11A109.1
C7—C6—C5A120.61 (11)N1—C11—H11B109.1
C7—C6—H6119.7C10—C11—H11B109.1
C5A—C6—H6119.7H11A—C11—H11B107.8
C8B—N1—C1—O1−178.75 (11)C8—N2—C8A—C8B172.78 (10)
C11—N1—C1—O114.27 (16)C9—N2—C8A—C8B−22.26 (15)
C8B—N1—C1—C23.94 (16)C5—C5A—C8A—N2−168.25 (11)
C11—N1—C1—C2−163.05 (10)C6—C5A—C8A—N29.93 (15)
O1—C1—C2—C3−172.18 (12)C5—C5A—C8A—C8B9.86 (16)
N1—C1—C2—C35.07 (17)C6—C5A—C8A—C8B−171.97 (10)
C1—C2—C3—C3A−5.67 (19)C1—N1—C8B—C3A−12.22 (16)
C2—C3—C3A—C8B−2.60 (17)C11—N1—C8B—C3A154.55 (10)
C2—C3—C3A—C4175.74 (11)C1—N1—C8B—C8A169.50 (10)
C8B—C3A—C4—C51.19 (17)C11—N1—C8B—C8A−23.73 (15)
C3—C3A—C4—C5−177.11 (11)C4—C3A—C8B—N1−167.08 (10)
C3A—C4—C5—C5A−8.16 (17)C3—C3A—C8B—N111.29 (16)
C4—C5—C5A—C8A2.53 (17)C4—C3A—C8B—C8A11.25 (16)
C4—C5—C5A—C6−175.58 (11)C3—C3A—C8B—C8A−170.38 (10)
C8A—C5A—C6—C7−2.72 (17)N2—C8A—C8B—N1−20.18 (16)
C5—C5A—C6—C7175.44 (11)C5A—C8A—C8B—N1161.76 (10)
C5A—C6—C7—C8−5.58 (18)N2—C8A—C8B—C3A161.53 (11)
C8A—N2—C8—O2178.52 (10)C5A—C8A—C8B—C3A−16.53 (15)
C9—N2—C8—O213.30 (16)C8—N2—C9—C10−109.99 (11)
C8A—N2—C8—C71.04 (16)C8A—N2—C9—C1084.27 (12)
C9—N2—C8—C7−164.18 (10)N2—C9—C10—C11−44.99 (13)
C6—C7—C8—O2−170.97 (12)C1—N1—C11—C10−108.30 (11)
C6—C7—C8—N26.44 (17)C8B—N1—C11—C1084.22 (12)
C8—N2—C8A—C5A−9.19 (16)C9—C10—C11—N1−42.52 (13)
C9—N2—C8A—C5A155.77 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2793).

References

  • Jacobson, R. (1998). REQAB Molecular Structure Corporation, The Woodlands, Texas, USA.
  • Nadeem, S., Shah, M. R. & VanDerveer, D. (2009). Acta Cryst. E65, o897. [PMC free article] [PubMed]
  • Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev.35, 1269–1286 [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography