PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1620.
Published online 2010 June 9. doi:  10.1107/S1600536810021124
PMCID: PMC3006695

4,4′-(Propane-1,3-diyldi­oxy)dibenz­aldehyde

Abstract

The title compound, C17H16O4, is a dialdehyde in which two formyl­phen­oxy units are linked by a –CH2CH2CH2– chain; the mol­ecule is V-shaped with the middle methyl­ene C atom as the apex. The two benzene rings are aligned at 77.4 (1)°. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of non-classical C—H(...)O hydrogen bonds.

Related literature

For background to Schiff bases derived by condensing similar dialdehydes with primary amines, see: Zhang et al. (2008 [triangle]). For the crystal structure of the 2,2′-disubstituted analog, see: Hu et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1620-scheme1.jpg

Experimental

Crystal data

  • C17H16O4
  • M r = 284.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1620-efi1.jpg
  • a = 15.3323 (15) Å
  • b = 4.6173 (5) Å
  • c = 20.2800 (19) Å
  • β = 104.783 (1)°
  • V = 1388.2 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.25 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • 8297 measured reflections
  • 3113 independent reflections
  • 2538 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.106
  • S = 1.03
  • 3113 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021124/ci5094sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021124/ci5094Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University of Karachi and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The two-arm aldehyde is intended for condensation with primary amines to form Schiff bases, which, in a subsequent step, will be reacted with β-cyclodextrin to furnish inclusion compounds. The idea for this theme draws on a report on such compounds of poly(Schiff bases) (Zhang et al., 2008). The flexibilty of the Schiff base can be controlled by varying the position of the formyl group; the title compound has the the formyl groups in the 4,4'-positions. The crystal structure of the 2,2'-substituted compound has been reported (Hu et al., 2005). The molecule of C17H16O4 (Scheme I) is V-shaped with the middle methylene carbon as the apex (Fig. 1).

Experimental

4-Hydroxybenzaldehyde (1 g, 8.2 mmol) was dissolved in acetone (25 ml). To the solution was added potassium carbonate (2.3 g, 16.4 mmol). The mixture was heated for 1 h. 1,3-Dibromopropane (0.29 ml, 2.7 mmol) was added and the mixture heated for another hour. The mixture was set aside for 8 h. The solvent was removed and the solid material was extracted with ethyl acetate. The solvent was again removed and the product purified by column chromatography by using dichloromethane-hexane (1:4) as mobile phase. Single crystals were obtained by recrystallization from dichloromethane.

Refinement

H atoms were placed in calculated positions [C–H = 0.95–0.99 Å] and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Displacement ellipsoid plot (Barbour, 2001) of C17H16O4 at the 70% probability level; H atoms are drawn as spheres of arbitrary radius.

Crystal data

C17H16O4F(000) = 600
Mr = 284.30Dx = 1.360 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2677 reflections
a = 15.3323 (15) Åθ = 3.1–28.0°
b = 4.6173 (5) ŵ = 0.10 mm1
c = 20.2800 (19) ÅT = 100 K
β = 104.783 (1)°Plate, colourless
V = 1388.2 (2) Å30.25 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer2538 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
graphiteθmax = 27.5°, θmin = 1.5°
ω scansh = −19→19
8297 measured reflectionsk = −5→5
3113 independent reflectionsl = −19→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0513P)2 + 0.4617P] where P = (Fo2 + 2Fc2)/3
3113 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.21 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.33791 (6)1.4272 (2)0.27971 (5)0.0247 (2)
O20.37445 (6)0.5332 (2)0.52487 (5)0.0191 (2)
O30.36450 (6)0.5695 (2)0.70403 (5)0.0191 (2)
O40.58320 (6)1.2514 (2)0.97043 (5)0.0290 (3)
C10.28543 (9)1.3387 (3)0.31097 (7)0.0193 (3)
H10.22601.41540.29920.023*
C20.30737 (8)1.1217 (3)0.36563 (7)0.0171 (3)
C30.24107 (8)1.0286 (3)0.39613 (7)0.0183 (3)
H30.18161.10280.38050.022*
C40.25983 (8)0.8289 (3)0.44913 (7)0.0182 (3)
H40.21370.76570.46940.022*
C50.34744 (8)0.7227 (3)0.47213 (6)0.0166 (3)
C60.41484 (8)0.8113 (3)0.44128 (7)0.0188 (3)
H60.47420.73610.45660.023*
C70.39463 (9)1.0082 (3)0.38860 (7)0.0192 (3)
H70.44041.06780.36760.023*
C80.30783 (8)0.4333 (3)0.55834 (7)0.0182 (3)
H8A0.25900.32830.52570.022*
H8B0.28100.59910.57710.022*
C90.35588 (9)0.2331 (3)0.61526 (7)0.0190 (3)
H9A0.39010.08690.59640.023*
H9B0.31030.12900.63310.023*
C100.42019 (8)0.3892 (3)0.67370 (7)0.0176 (3)
H10A0.45440.24860.70740.021*
H10B0.46350.50840.65670.021*
C110.40426 (8)0.7236 (3)0.76107 (6)0.0164 (3)
C120.34516 (8)0.8830 (3)0.78886 (7)0.0189 (3)
H120.28210.87620.76850.023*
C130.37858 (9)1.0507 (3)0.84602 (7)0.0202 (3)
H130.33831.16110.86470.024*
C140.47139 (8)1.0595 (3)0.87679 (7)0.0187 (3)
C150.52930 (8)0.8986 (3)0.84844 (7)0.0189 (3)
H150.59230.90380.86910.023*
C160.49718 (8)0.7308 (3)0.79069 (7)0.0174 (3)
H160.53750.62270.77160.021*
C170.50495 (9)1.2379 (3)0.93787 (7)0.0235 (3)
H170.46221.35160.95310.028*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0269 (5)0.0271 (5)0.0213 (5)0.0011 (4)0.0081 (4)0.0041 (4)
O20.0179 (4)0.0231 (5)0.0158 (5)0.0023 (4)0.0036 (4)0.0036 (4)
O30.0165 (4)0.0234 (5)0.0163 (5)0.0004 (4)0.0020 (3)−0.0030 (4)
O40.0248 (5)0.0375 (6)0.0228 (6)−0.0053 (4)0.0027 (4)−0.0083 (5)
C10.0220 (6)0.0177 (6)0.0168 (7)0.0004 (5)0.0027 (5)−0.0033 (5)
C20.0200 (6)0.0162 (6)0.0139 (6)−0.0002 (5)0.0020 (5)−0.0036 (5)
C30.0168 (6)0.0190 (6)0.0169 (7)0.0015 (5)0.0006 (5)−0.0027 (5)
C40.0171 (6)0.0207 (6)0.0165 (7)−0.0013 (5)0.0039 (5)−0.0019 (5)
C50.0197 (6)0.0166 (6)0.0118 (6)0.0005 (5)0.0010 (5)−0.0027 (5)
C60.0166 (6)0.0212 (7)0.0177 (7)0.0022 (5)0.0026 (5)−0.0018 (5)
C70.0189 (6)0.0211 (7)0.0180 (7)−0.0012 (5)0.0055 (5)−0.0017 (5)
C80.0187 (6)0.0199 (7)0.0158 (7)−0.0021 (5)0.0039 (5)−0.0018 (5)
C90.0208 (6)0.0174 (6)0.0181 (7)−0.0019 (5)0.0035 (5)−0.0009 (5)
C100.0184 (6)0.0182 (6)0.0160 (7)0.0010 (5)0.0038 (5)−0.0005 (5)
C110.0191 (6)0.0155 (6)0.0135 (6)−0.0013 (5)0.0022 (5)0.0025 (5)
C120.0154 (6)0.0218 (7)0.0192 (7)−0.0006 (5)0.0037 (5)0.0012 (5)
C130.0194 (6)0.0205 (7)0.0221 (7)0.0011 (5)0.0077 (5)−0.0014 (6)
C140.0205 (6)0.0190 (6)0.0163 (7)−0.0018 (5)0.0037 (5)0.0006 (5)
C150.0160 (6)0.0204 (7)0.0186 (7)−0.0006 (5)0.0015 (5)0.0027 (5)
C160.0165 (6)0.0190 (6)0.0173 (7)0.0016 (5)0.0053 (5)0.0009 (5)
C170.0242 (7)0.0258 (7)0.0214 (7)−0.0022 (6)0.0073 (5)−0.0026 (6)

Geometric parameters (Å, °)

O1—C11.2152 (16)C8—H8A0.99
O2—C51.3620 (15)C8—H8B0.99
O2—C81.4389 (15)C9—C101.5167 (17)
O3—C111.3623 (15)C9—H9A0.99
O3—C101.4382 (15)C9—H9B0.99
O4—C171.2145 (17)C10—H10A0.99
C1—C21.4682 (19)C10—H10B0.99
C1—H10.95C11—C121.3931 (18)
C2—C31.3863 (18)C11—C161.3981 (17)
C2—C71.4014 (18)C12—C131.3796 (19)
C3—C41.3894 (19)C12—H120.95
C3—H30.95C13—C141.4009 (17)
C4—C51.3938 (18)C13—H130.95
C4—H40.95C14—C151.3895 (19)
C5—C61.3989 (18)C14—C171.4674 (19)
C6—C71.3765 (19)C15—C161.3859 (18)
C6—H60.95C15—H150.95
C7—H70.95C16—H160.95
C8—C91.5153 (18)C17—H170.95
C5—O2—C8117.78 (10)C10—C9—H9A108.9
C11—O3—C10118.66 (9)C8—C9—H9B108.9
O1—C1—C2124.65 (12)C10—C9—H9B108.9
O1—C1—H1117.7H9A—C9—H9B107.7
C2—C1—H1117.7O3—C10—C9105.71 (10)
C3—C2—C7118.83 (12)O3—C10—H10A110.6
C3—C2—C1119.72 (11)C9—C10—H10A110.6
C7—C2—C1121.44 (12)O3—C10—H10B110.6
C2—C3—C4121.36 (12)C9—C10—H10B110.6
C2—C3—H3119.3H10A—C10—H10B108.7
C4—C3—H3119.3O3—C11—C12115.02 (11)
C3—C4—C5118.95 (12)O3—C11—C16124.28 (11)
C3—C4—H4120.5C12—C11—C16120.69 (12)
C5—C4—H4120.5C13—C12—C11119.74 (11)
O2—C5—C4124.25 (12)C13—C12—H12120.1
O2—C5—C6115.34 (11)C11—C12—H12120.1
C4—C5—C6120.40 (12)C12—C13—C14120.51 (12)
C7—C6—C5119.66 (12)C12—C13—H13119.7
C7—C6—H6120.2C14—C13—H13119.7
C5—C6—H6120.2C15—C14—C13118.95 (12)
C6—C7—C2120.77 (12)C15—C14—C17121.73 (12)
C6—C7—H7119.6C13—C14—C17119.32 (12)
C2—C7—H7119.6C16—C15—C14121.44 (12)
O2—C8—C9106.81 (10)C16—C15—H15119.3
O2—C8—H8A110.4C14—C15—H15119.3
C9—C8—H8A110.4C15—C16—C11118.67 (12)
O2—C8—H8B110.4C15—C16—H16120.7
C9—C8—H8B110.4C11—C16—H16120.7
H8A—C8—H8B108.6O4—C17—C14124.94 (13)
C8—C9—C10113.45 (11)O4—C17—H17117.5
C8—C9—H9A108.9C14—C17—H17117.5
O1—C1—C2—C3−177.57 (13)C11—O3—C10—C9176.03 (10)
O1—C1—C2—C73.3 (2)C8—C9—C10—O365.84 (13)
C7—C2—C3—C40.75 (19)C10—O3—C11—C12−177.41 (11)
C1—C2—C3—C4−178.41 (12)C10—O3—C11—C163.47 (18)
C2—C3—C4—C50.48 (19)O3—C11—C12—C13−178.89 (12)
C8—O2—C5—C40.89 (18)C16—C11—C12—C130.26 (19)
C8—O2—C5—C6−179.69 (11)C11—C12—C13—C14−0.7 (2)
C3—C4—C5—O2178.02 (12)C12—C13—C14—C150.6 (2)
C3—C4—C5—C6−1.37 (19)C12—C13—C14—C17−179.52 (13)
O2—C5—C6—C7−178.41 (11)C13—C14—C15—C160.0 (2)
C4—C5—C6—C71.0 (2)C17—C14—C15—C16−179.92 (12)
C5—C6—C7—C20.2 (2)C14—C15—C16—C11−0.42 (19)
C3—C2—C7—C6−1.1 (2)O3—C11—C16—C15179.37 (12)
C1—C2—C7—C6178.04 (12)C12—C11—C16—C150.29 (19)
C5—O2—C8—C9−178.76 (10)C15—C14—C17—O4−3.7 (2)
O2—C8—C9—C1070.22 (13)C13—C14—C17—O4176.44 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.573.508 (2)168
C16—H16···O1ii0.952.413.287 (2)154

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5094).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hu, P.-Z., Ma, L.-F., Wang, J.-G., Zhao, B.-T. & Wang, L.-Y. (2005). Acta Cryst. E61, o2775–o2777.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.
  • Zhang, Y., Deng, X., Wang, L. & Wei, T. (2008). J. Incl. Phenom. Macrocycl. Chem.60, 313–319.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography