PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m832.
Published online 2010 June 23. doi:  10.1107/S1600536810023457
PMCID: PMC3006690

Poly[μ6-pyridine-2,4-dicarboxyl­ato-barium]

Abstract

In the title complex, [Ba(C7H3NO4)]n, the coordination geometry around the BaII ion can be described as a distorted bicapped trigonal-prismatic BaNO7 arrangement. The pyridine-2,4-dicarb­oxy­lic acid ligands exhibit a new coordination mode. Adjacent metal centers are linked by the O atoms of the pyridine-2,4-dicarb­oxy­lic acid ligands, and then form a three-dimensional supra­molecular polymeric framework.

Related literature

For related structures, see: Frisch & Cahill (2006 [triangle]); Huang et al. (2007 [triangle]); Li et al. (2008 [triangle]); Liang et al. (2002 [triangle]); Noro et al. (2002 [triangle]); Soleimannejad et al. (2009 [triangle]); Zhang (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m832-scheme1.jpg

Experimental

Crystal data

  • [Ba(C7H3NO4)]
  • M r = 302.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m832-efi7.jpg
  • a = 11.7570 (11) Å
  • b = 7.2121 (7) Å
  • c = 17.4547 (16) Å
  • β = 93.471 (1)°
  • V = 1477.3 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 5.35 mm−1
  • T = 296 K
  • 0.37 × 0.34 × 0.07 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.325, T max = 0.783
  • 4192 measured reflections
  • 1662 independent reflections
  • 1547 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.018
  • wR(F 2) = 0.048
  • S = 1.03
  • 1662 reflections
  • 119 parameters
  • H-atom parameters constrained
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810023457/pb2031sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023457/pb2031Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Scientific Research Foundation of Northwest A&F University (grant No. Z111020828).

supplementary crystallographic information

Comment

Complex of SrII ion with pyridine-2,4-dicarboxylic acid, [Sr(C7H3NO4)(H2O)2]n, has been previously studied (Soleimannejad et al., 2009), which is a two-dimensional polymer.

Here we report a complex (I) assembled by alkaline earth metal BaII ion with pyridine-2,4-dicarboxylic acid ligand. The formula for the complex is [Ba(C7H3NO4)]n, X-ray crystal analyse reveals that the pyridine-2,4-dicarboxylic acid ligands in the complex are completely deprotonated, which is the same with the complex of [Sr(C7H3NO4)(H2O)2]n.

In the title complex, the asymmetric unit consists of one BaII ion and one pyridine-2,4-dicarboxylate. The coordination geometry around BaII ion (Fig. 1) could be described as a distorted bicapped trigonal prism arrangement with coordination number of 8, where N1, O2B and O4D form the top plane of the trigonal prism, and the bottom plane is completed by O3A, O4E, and O1C, while O1 and O3E capped two quadrilateral faces formed by N1, O3A, O1C, O4D and O2B, O4E, O1C, O4D, respectively. All the coordinated atoms in the title complex are oxygen atoms and nitrogen atoms of pyridine-2,4-dicarboxylic acid ligands, which is different from the complex of [Sr(C7H3NO4)(H2O)2]n, oxygen atoms of water molecules also take part in the coordination with metal centers. The bond length of Ba—Ocarboxylate bonds range from 2.706 (2) to 2.8941 (19) Å, which compare well with the mean value determined from the CSD [2.798 (7) Å for Ba—Ocarboxylate bond](Table 1). The coordination mode (Fig. 2) of pyridine-2,4-dicarboxylic acid ligands can be classified as µ6-(κ8N, O1: O1: O2: O3: O3: O4: O4), that is, two 4-position carboxylate oxygen atoms (O3 and O4) coordinate to three BaII ions, one of the 2-position carboxylate oxygen atoms (O1) coordinates to two BaII ions, at the same time, this oxygen atom chelate a BaII ion with the pyridyl nitrogen (N1). The other 2-position oxygen atom (O2) coordinates to one BaII ion. This coordination mode is not observed in previous reports (Soleimannejad et al., 2009; Huang et al., 2007; Zhang, 2005; Liang et al., 2002; Li et al., 2008; Frisch et al., 2006; Noro et al., 2002). The adjacent metal centers are linked by the oxygen and nitrogen atoms of pyridine-2,4-dicarboxylic acid ligands, and then form a three-dimensional supramolecular polymeric framework (Fig. 3), while in the complex of Sr(C7H3NO4)(H2O)2]n (Soleimannejad et al., 2009), the three-dimensional structure is constructed by non-covalent interactions consisting of O—H···O hydrogen bonds and π-π stacking interactions.

Experimental

A mixture of barium chloride dihydrate (0.0244 g, 0.1 mmol), sodium hydroxide (0.0080 g, 0.2 mmol), pyridine-2,4-dicarboxylic acid (0.0167 g, 0.1 mmol), and H2O (3 mL) was placed in a Parr Teflon-lined stainless stell vessel (25 ml), and then the vessel was sealed and heated at 443.15 K for 4 days. Then the vessel was cooled to 373.15 K at a rate of 5 K h-1 and slowly cooled to room temperature. Colorless, rectangular single crystals suitable for X-ray diffraction were obtained.

Figures

Fig. 1.
Coordination environment of BaII ion in the title complex. Non-hydrogen atoms are shown as 30% probability ellipsoids. Hydrogen atoms are omitted for clarity. Symmetry codes: (A) -x + 1, -y, -z + 1; (B) x - 1/2, y + 1/2, z; (C) -x + 1, y, -z + 1/2; (D) ...
Fig. 2.
Coordination mode of pyridine-2,4-dicarboxylic acid ligands in the title complex. Non-hydrogen atoms are shown as 30% probability ellipsoids. Hydrogen atoms are omitted for clarity.
Fig. 3.
View of three-dimensional framework along b axis in the title complex.

Crystal data

[Ba(C7H3NO4)]F(000) = 1120
Mr = 302.44Dx = 2.720 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2902 reflections
a = 11.7570 (11) Åθ = 2.3–27.5°
b = 7.2121 (7) ŵ = 5.35 mm1
c = 17.4547 (16) ÅT = 296 K
β = 93.471 (1)°Block, colorless
V = 1477.3 (2) Å30.37 × 0.34 × 0.07 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer1662 independent reflections
Radiation source: fine-focus sealed tube1547 reflections with I > 2σ(I)
graphiteRint = 0.018
phi and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −15→13
Tmin = 0.325, Tmax = 0.783k = −9→9
4192 measured reflectionsl = −16→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.048w = 1/[σ2(Fo2) + (0.0287P)2 + 1.379P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
1662 reflectionsΔρmax = 0.70 e Å3
119 parametersΔρmin = −0.45 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00237 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ba10.332689 (13)0.35356 (2)0.305017 (8)0.01561 (9)
N10.44887 (19)0.2899 (3)0.45739 (13)0.0175 (5)
O10.55983 (18)0.2658 (3)0.32482 (11)0.0282 (5)
O20.68945 (17)0.0756 (3)0.38112 (12)0.0260 (4)
O30.69395 (18)0.0151 (3)0.67349 (12)0.0255 (4)
O40.63043 (17)0.2757 (3)0.72435 (11)0.0214 (4)
C30.5531 (2)0.2109 (4)0.45821 (15)0.0151 (5)
C40.6129 (2)0.1626 (3)0.52576 (17)0.0179 (6)
H40.68280.10270.52450.021*
C50.5685 (2)0.2036 (4)0.59553 (15)0.0162 (5)
C60.4620 (2)0.2887 (4)0.59501 (16)0.0188 (5)
H60.42990.32080.64060.023*
C70.4053 (2)0.3242 (4)0.52447 (17)0.0196 (6)
H70.33260.37490.52410.023*
C10.6053 (2)0.1797 (4)0.38175 (17)0.0190 (6)
C20.6353 (2)0.1607 (3)0.67076 (16)0.0169 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ba10.01808 (12)0.01548 (11)0.01308 (12)0.00230 (5)−0.00070 (7)−0.00040 (5)
N10.0179 (11)0.0184 (11)0.0159 (11)0.0011 (9)−0.0007 (9)−0.0004 (9)
O10.0256 (11)0.0458 (13)0.0133 (10)0.0028 (10)0.0015 (8)0.0056 (9)
O20.0215 (10)0.0315 (11)0.0258 (11)0.0039 (9)0.0080 (8)−0.0055 (9)
O30.0332 (11)0.0187 (10)0.0231 (11)0.0011 (9)−0.0093 (9)0.0031 (8)
O40.0263 (10)0.0228 (10)0.0148 (10)−0.0029 (8)−0.0006 (8)−0.0009 (8)
C30.0169 (12)0.0139 (12)0.0146 (13)−0.0013 (10)0.0007 (10)0.0002 (10)
C40.0175 (13)0.0161 (12)0.0200 (14)0.0007 (9)0.0012 (11)−0.0003 (10)
C50.0187 (13)0.0135 (11)0.0160 (13)−0.0029 (10)−0.0014 (10)0.0026 (10)
C60.0234 (14)0.0173 (12)0.0162 (13)−0.0002 (11)0.0037 (10)−0.0026 (11)
C70.0156 (13)0.0212 (13)0.0220 (15)0.0030 (10)0.0019 (11)−0.0008 (11)
C10.0163 (13)0.0226 (13)0.0183 (14)−0.0041 (11)0.0027 (10)−0.0019 (11)
C20.0204 (14)0.0165 (13)0.0137 (13)−0.0066 (10)−0.0003 (11)0.0039 (10)

Geometric parameters (Å, °)

Ba1—O3i2.706 (2)O3—Ba1i2.706 (2)
Ba1—O2ii2.727 (2)O3—Ba1vii2.8941 (19)
Ba1—O1iii2.735 (2)O4—C21.254 (3)
Ba1—O12.746 (2)O4—Ba1iv2.762 (2)
Ba1—O4iv2.762 (2)O4—Ba1vii2.8463 (19)
Ba1—O4v2.8463 (19)C3—C41.380 (4)
Ba1—O3v2.8941 (19)C3—C11.519 (4)
Ba1—N12.951 (2)C4—C51.385 (4)
Ba1—C2v3.199 (3)C4—H40.9300
N1—C71.329 (4)C5—C61.394 (4)
N1—C31.351 (3)C5—C21.520 (4)
O1—C11.263 (3)C6—C71.388 (4)
O1—Ba1iii2.735 (2)C6—H60.9300
O2—C11.242 (3)C7—H70.9300
O2—Ba1vi2.727 (2)C2—Ba1vii3.199 (3)
O3—C21.256 (3)
O3i—Ba1—O2ii115.43 (7)N1—Ba1—Ba1ix132.65 (4)
O3i—Ba1—O1iii87.17 (7)C2v—Ba1—Ba1ix55.55 (4)
O2ii—Ba1—O1iii150.40 (7)Ba1viii—Ba1—Ba1ix107.398 (9)
O3i—Ba1—O182.87 (7)O3i—Ba1—Ba1iii99.87 (5)
O2ii—Ba1—O1134.32 (6)O2ii—Ba1—Ba1iii142.45 (5)
O1iii—Ba1—O163.66 (7)O1iii—Ba1—Ba1iii35.23 (4)
O3i—Ba1—O4iv176.22 (6)O1—Ba1—Ba1iii35.07 (4)
O2ii—Ba1—O4iv68.31 (6)O4iv—Ba1—Ba1iii76.62 (4)
O1iii—Ba1—O4iv89.12 (7)O4v—Ba1—Ba1iii121.12 (4)
O1—Ba1—O4iv94.82 (7)O3v—Ba1—Ba1iii97.31 (5)
O3i—Ba1—O4v69.30 (6)N1—Ba1—Ba1iii90.91 (5)
O2ii—Ba1—O4v84.91 (6)C2v—Ba1—Ba1iii107.64 (5)
O1iii—Ba1—O4v85.89 (6)Ba1viii—Ba1—Ba1iii100.719 (6)
O1—Ba1—O4v139.80 (6)Ba1ix—Ba1—Ba1iii100.719 (6)
O4iv—Ba1—O4v111.18 (5)C7—N1—C3117.8 (2)
O3i—Ba1—O3v111.55 (5)C7—N1—Ba1125.67 (17)
O2ii—Ba1—O3v81.90 (6)C3—N1—Ba1116.43 (17)
O1iii—Ba1—O3v71.64 (6)C1—O1—Ba1iii124.82 (18)
O1—Ba1—O3v132.26 (6)C1—O1—Ba1125.07 (18)
O4iv—Ba1—O3v67.86 (5)Ba1iii—O1—Ba1109.69 (7)
O4v—Ba1—O3v45.65 (6)C1—O2—Ba1vi151.01 (19)
O3i—Ba1—N176.91 (6)C2—O3—Ba1i139.38 (19)
O2ii—Ba1—N185.30 (6)C2—O3—Ba1vii92.19 (16)
O1iii—Ba1—N1119.93 (6)Ba1i—O3—Ba1vii106.03 (6)
O1—Ba1—N157.12 (6)C2—O4—Ba1iv119.16 (17)
O4iv—Ba1—N1104.39 (6)C2—O4—Ba1vii94.48 (17)
O4v—Ba1—N1136.23 (6)Ba1iv—O4—Ba1vii105.85 (6)
O3v—Ba1—N1166.82 (6)N1—C3—C4122.0 (3)
O3i—Ba1—C2v89.14 (6)N1—C3—C1117.9 (2)
O2ii—Ba1—C2v86.19 (6)C4—C3—C1120.1 (2)
O1iii—Ba1—C2v74.73 (7)C3—C4—C5119.8 (3)
O1—Ba1—C2v137.89 (7)C3—C4—H4120.1
O4iv—Ba1—C2v90.59 (6)C5—C4—H4120.1
O4v—Ba1—C2v23.01 (7)C4—C5—C6118.3 (2)
O3v—Ba1—C2v23.11 (6)C4—C5—C2120.9 (2)
N1—Ba1—C2v158.59 (7)C6—C5—C2120.8 (3)
O3i—Ba1—Ba1viii38.44 (4)C7—C6—C5118.0 (3)
O2ii—Ba1—Ba1viii114.66 (4)C7—C6—H6121.0
O1iii—Ba1—Ba1viii70.63 (5)C5—C6—H6121.0
O1—Ba1—Ba1viii105.21 (5)N1—C7—C6123.9 (3)
O4iv—Ba1—Ba1viii140.32 (4)N1—C7—H7118.1
O4v—Ba1—Ba1viii36.42 (4)C6—C7—H7118.1
O3v—Ba1—Ba1viii73.38 (4)O2—C1—O1126.1 (3)
N1—Ba1—Ba1viii115.27 (5)O2—C1—C3117.5 (3)
C2v—Ba1—Ba1viii51.86 (4)O1—C1—C3116.4 (2)
O3i—Ba1—Ba1ix143.17 (4)O4—C2—O3125.1 (3)
O2ii—Ba1—Ba1ix58.04 (5)O4—C2—C5117.7 (2)
O1iii—Ba1—Ba1ix92.37 (5)O3—C2—C5117.2 (2)
O1—Ba1—Ba1ix129.33 (5)O4—C2—Ba1vii62.52 (14)
O4iv—Ba1—Ba1ix37.73 (4)O3—C2—Ba1vii64.71 (14)
O4v—Ba1—Ba1ix73.94 (4)C5—C2—Ba1vii162.39 (18)
O3v—Ba1—Ba1ix35.53 (4)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1/2, y+1/2, z; (iii) −x+1, y, −z+1/2; (iv) −x+1, −y+1, −z+1; (v) x−1/2, −y+1/2, z−1/2; (vi) x+1/2, y−1/2, z; (vii) x+1/2, −y+1/2, z+1/2; (viii) −x+1/2, y−1/2, −z+1/2; (ix) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2031).

References

  • Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Frisch, M. & Cahill, C. L. (2006). Dalton Trans. pp. 4679–4690. [PubMed]
  • Huang, Y. G., Zhou, Y., Yuan, D. Q., Wu, B. L., Jiang, F. L. & Hong, M. C. (2007). J. Mol. Struct.830, 85–93.
  • Li, Z. G., Wang, G. H., Jia, H. Q., Hu, N. H. & Xu, J. W. (2008). CrystEngComm, 10, 173–176.
  • Liang, Y. C., Cao Hong, M. C., Sun, D. F., Zhao, Y. J., Weng, J. B. & Wang, R. H. (2002). Inorg. Chem. Commun.5, 366–368.
  • Noro, S., Kitagawa, S., Yamashita, M. & Wada, T. (2002). CrystEngComm, 4, 162–164.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soleimannejad, J., Mohammadzadeh, Y., Aghabozorg, H. & Derikvand, Z. (2009). Acta Cryst. E65, m922. [PMC free article] [PubMed]
  • Zhang, X. M. (2005). Inorg. Chim. Acta, 358, 1865–1872.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography