PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m847.
Published online 2010 June 26. doi:  10.1107/S1600536810023809
PMCID: PMC3006688

Poly[aqua­(μ1,1-azido)(μ-3H-1,2,3-tri­azolo[4,5-b]pyridin-3-olato)cobalt(II)]

Abstract

In the title compound, [Co(C5H3N4O)(N3)(H2O)]n, the cobalt ion is coordinated by three N atoms of two organic ligands, two N atoms of two azide anions and one water mol­ecule in a distorted octa­hedral geometry. The metal atoms are connected via the ligands into layers, which are further connected by O—H(...)N and O—H(...)O hydrogen bonding.

Related literature

For the coordination modes of azide anions, see: Zeng et al. (2009 [triangle]). For the preparation and chacterization of metal–azide complexes with different co-ligands, see: Wang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m847-scheme1.jpg

Experimental

Crystal data

  • [Co(C5H3N4O)(N3)(H2O)]
  • M r = 254.09
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m847-efi1.jpg
  • a = 7.0891 (14) Å
  • b = 10.122 (2) Å
  • c = 12.685 (4) Å
  • β = 113.08 (2)°
  • V = 837.4 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.04 mm−1
  • T = 293 K
  • 0.20 × 0.18 × 0.18 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.462, T max = 1
  • 6902 measured reflections
  • 1469 independent reflections
  • 1352 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.112
  • S = 1.09
  • 1469 reflections
  • 144 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.50 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006 [triangle]); cell refinement: PROCESS-AUTO (Rigaku, 1998 [triangle]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810023809/nc2187sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023809/nc2187Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from Tianjin Municipal Education Commission (grant No. 20060503).

supplementary crystallographic information

Comment

Azide anion has drawn much attentions because they can coordinate to metal ions in diverse coordination modes (Zeng,et al., 2009). Therefore, several metal azide complexes with different co-ligand has been prepared and characterized (Wang,et al., 2008). As a part on a project of new metal azide coordination polymers the structure of the title compound was determined.

In the crystal structure of the title compound the Co ions are coordinated by two N atoms of two symmetry related azide anion, three N atoms of two symmetry related organic ligands and one water molecule within slightly distorted octahedra (Fig. 1). The Co ions are connected via two end-on bridging thiocyanato anions into chains, that are further be connected into layers by the organic ligands. These layers are located in the b-c-plane and are linked via N-H···O and N-H···N hydrogen bonding to adjacent water molecules and azide anions (Fig. 2).

Experimental

A mixture of Co(II)nitrate (1.5mmol), 3H-[1,2,3]triazolo[4,5-b]pyridin-3-ol(0.75 mmol), and sodium azide (2mmol), in 10 ml MeOH solvent was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 413 K for 48 h. Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature. Yield 20% based on metal salt.

Refinement

Hydrogen atoms of water molecule were added by difference Fourier maps and refined directly. Other hydrogen atoms were included in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The structure of the complex with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: i = x,-y-1/2,z-1/2, ii = -x+1,-y-1,-z-1 and iii = x,-y-1/2,z+1/2
Fig. 2.
Crystal structure of the title compound with view along the c axis.

Crystal data

[Co(C5H3N4O)(N3)(H2O)]F(000) = 508
Mr = 254.09Dx = 2.015 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.0891 (14) ÅCell parameters from 7903 reflections
b = 10.122 (2) Åθ = 3.1–27.7°
c = 12.685 (4) ŵ = 2.04 mm1
β = 113.08 (2)°T = 293 K
V = 837.4 (4) Å3Block, red
Z = 40.2 × 0.18 × 0.18 mm

Data collection

Rigaku SCXmini diffractometer1469 independent reflections
Radiation source: fine-focus sealed tube1352 reflections with I > 2σ(I)
graphiteRint = 0.040
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −8→8
Tmin = 0.462, Tmax = 1k = −12→12
6902 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0466P)2 + 3.7642P] where P = (Fo2 + 2Fc2)/3
1469 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 1.50 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.30993 (8)−0.38921 (6)−0.53843 (5)0.0158 (2)
O10.2961 (5)−0.4313 (3)−0.3763 (3)0.0234 (7)
N10.3036 (6)−0.1727 (4)−0.1987 (3)0.0212 (8)
N20.3051 (6)−0.3027 (4)−0.2197 (3)0.0204 (8)
N30.2971 (5)−0.3160 (4)−0.3251 (3)0.0179 (8)
N40.2849 (6)−0.1814 (4)−0.4803 (3)0.0211 (8)
N50.3650 (6)−0.5988 (4)−0.5436 (3)0.0213 (8)
N60.2624 (6)−0.6837 (4)−0.6055 (3)0.0230 (9)
N70.1639 (8)−0.7656 (5)−0.6637 (4)0.0420 (12)
C10.2719 (7)−0.0579 (5)−0.5091 (4)0.0261 (11)
H1A0.2669−0.0371−0.58160.031*
C20.2650 (9)0.0474 (5)−0.4373 (4)0.0317 (11)
H2A0.25290.1337−0.46440.038*
C30.2756 (8)0.0249 (5)−0.3296 (4)0.0261 (10)
H3A0.27240.0936−0.28170.031*
C40.2914 (7)−0.1065 (5)−0.2948 (4)0.0225 (10)
C50.2908 (6)−0.1985 (4)−0.3742 (3)0.0172 (9)
O1W−0.0066 (6)−0.3972 (5)−0.6162 (4)0.0402 (10)
H1WB−0.045 (10)−0.364 (7)−0.673 (6)0.05 (2)*
H1WA−0.078 (12)−0.466 (8)−0.626 (7)0.07 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0175 (3)0.0180 (3)0.0126 (3)−0.0012 (2)0.0067 (2)0.0002 (2)
O10.0313 (18)0.0192 (16)0.0224 (16)−0.0006 (14)0.0135 (14)−0.0048 (13)
N10.0208 (19)0.027 (2)0.0158 (18)0.0013 (16)0.0071 (15)0.0004 (16)
N20.029 (2)0.0180 (19)0.0177 (18)0.0012 (16)0.0130 (16)0.0002 (15)
N30.0213 (19)0.0178 (19)0.0165 (18)−0.0005 (15)0.0094 (15)−0.0018 (15)
N40.0217 (19)0.029 (2)0.0139 (18)0.0027 (16)0.0087 (15)0.0016 (16)
N50.0205 (19)0.019 (2)0.023 (2)−0.0030 (16)0.0070 (16)−0.0041 (16)
N60.026 (2)0.023 (2)0.0179 (19)−0.0030 (18)0.0063 (17)0.0031 (18)
N70.050 (3)0.035 (3)0.031 (2)−0.018 (2)0.004 (2)−0.006 (2)
C10.032 (3)0.033 (3)0.020 (2)−0.006 (2)0.017 (2)−0.004 (2)
C20.049 (3)0.023 (3)0.026 (3)−0.001 (2)0.017 (2)0.004 (2)
C30.037 (3)0.022 (2)0.022 (2)0.000 (2)0.014 (2)−0.0031 (19)
C40.022 (2)0.027 (3)0.019 (2)0.0011 (19)0.0094 (18)0.0003 (19)
C50.018 (2)0.020 (2)0.014 (2)−0.0006 (17)0.0074 (17)−0.0007 (17)
O1W0.0229 (19)0.051 (3)0.037 (2)−0.0086 (18)0.0013 (17)0.021 (2)

Geometric parameters (Å, °)

Co1—O1W2.069 (4)N4—C51.341 (5)
Co1—N1i2.111 (4)N5—N61.198 (5)
Co1—N5ii2.128 (4)N5—Co1ii2.128 (4)
Co1—O12.140 (3)N6—N71.147 (6)
Co1—N52.163 (4)C1—C21.416 (7)
Co1—N42.259 (4)C1—H1A0.9300
O1—N31.334 (5)C2—C31.357 (7)
N1—N21.343 (5)C2—H2A0.9300
N1—C41.365 (6)C3—C41.392 (7)
N1—Co1iii2.111 (4)C3—H3A0.9300
N2—N31.323 (5)C4—C51.371 (6)
N3—C51.335 (6)O1W—H1WB0.74 (7)
N4—C11.295 (6)O1W—H1WA0.84 (8)
O1W—Co1—N1i86.72 (16)C1—N4—Co1144.3 (3)
O1W—Co1—N5ii174.45 (17)C5—N4—Co1103.4 (3)
N1i—Co1—N5ii95.61 (15)N6—N5—Co1ii122.8 (3)
O1W—Co1—O190.03 (15)N6—N5—Co1130.7 (3)
N1i—Co1—O1173.20 (13)Co1ii—N5—Co1102.40 (15)
N5ii—Co1—O188.16 (14)N7—N6—N5179.2 (5)
O1W—Co1—N597.02 (17)N4—C1—C2124.2 (4)
N1i—Co1—N5101.43 (15)N4—C1—H1A117.9
N5ii—Co1—N577.60 (15)C2—C1—H1A117.9
O1—Co1—N584.88 (13)C3—C2—C1121.3 (5)
O1W—Co1—N489.00 (17)C3—C2—H2A119.4
N1i—Co1—N493.61 (14)C1—C2—H2A119.4
N5ii—Co1—N495.87 (14)C2—C3—C4116.4 (4)
O1—Co1—N480.35 (12)C2—C3—H3A121.8
N5—Co1—N4164.06 (14)C4—C3—H3A121.8
N3—O1—Co1107.4 (2)N1—C4—C5107.7 (4)
N2—N1—C4107.9 (4)N1—C4—C3136.2 (4)
N2—N1—Co1iii118.9 (3)C5—C4—C3116.1 (4)
C4—N1—Co1iii133.2 (3)N3—C5—N4124.4 (4)
N3—N2—N1107.4 (3)N3—C5—C4105.8 (4)
N2—N3—O1124.8 (3)N4—C5—C4129.8 (4)
N2—N3—C5111.2 (3)Co1—O1W—H1WB111 (5)
O1—N3—C5124.0 (3)Co1—O1W—H1WA125 (5)
C1—N4—C5112.2 (4)H1WB—O1W—H1WA105 (7)
O1W—Co1—O1—N3−93.8 (3)N5ii—Co1—N5—Co1ii0.0
N1i—Co1—O1—N3−32.4 (12)O1—Co1—N5—Co1ii−89.23 (15)
N5ii—Co1—O1—N391.4 (3)N4—Co1—N5—Co1ii−67.1 (5)
N5—Co1—O1—N3169.1 (3)Co1ii—N5—N6—N791 (38)
N4—Co1—O1—N3−4.9 (2)Co1—N5—N6—N7−116 (38)
C4—N1—N2—N30.9 (5)C5—N4—C1—C20.0 (7)
Co1iii—N1—N2—N3179.0 (3)Co1—N4—C1—C2−177.8 (4)
N1—N2—N3—O1179.9 (4)N4—C1—C2—C31.3 (8)
N1—N2—N3—C50.1 (5)C1—C2—C3—C4−0.6 (8)
Co1—O1—N3—N2−174.8 (3)N2—N1—C4—C5−1.5 (5)
Co1—O1—N3—C54.9 (5)Co1iii—N1—C4—C5−179.3 (3)
O1W—Co1—N4—C1−87.4 (6)N2—N1—C4—C3176.7 (5)
N1i—Co1—N4—C1−0.8 (6)Co1iii—N1—C4—C3−1.1 (8)
N5ii—Co1—N4—C195.3 (6)C2—C3—C4—N1−179.2 (5)
O1—Co1—N4—C1−177.6 (6)C2—C3—C4—C5−1.1 (7)
N5—Co1—N4—C1160.0 (5)N2—N3—C5—N4179.1 (4)
O1W—Co1—N4—C594.7 (3)O1—N3—C5—N4−0.7 (6)
N1i—Co1—N4—C5−178.7 (3)N2—N3—C5—C4−1.1 (5)
N5ii—Co1—N4—C5−82.7 (3)O1—N3—C5—C4179.1 (4)
O1—Co1—N4—C54.5 (3)C1—N4—C5—N3177.6 (4)
N5—Co1—N4—C5−17.9 (6)Co1—N4—C5—N3−3.7 (5)
O1W—Co1—N5—N624.1 (4)C1—N4—C5—C4−2.2 (7)
N1i—Co1—N5—N6−64.0 (4)Co1—N4—C5—C4176.5 (4)
N5ii—Co1—N5—N6−157.3 (5)N1—C4—C5—N31.6 (5)
O1—Co1—N5—N6113.5 (4)C3—C4—C5—N3−177.0 (4)
N4—Co1—N5—N6135.6 (5)N1—C4—C5—N4−178.6 (4)
O1W—Co1—N5—Co1ii−178.63 (17)C3—C4—C5—N42.8 (7)
N1i—Co1—N5—Co1ii93.31 (16)

Symmetry codes: (i) x, −y−1/2, z−1/2; (ii) −x+1, −y−1, −z−1; (iii) x, −y−1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WB···N7iv0.74 (7)2.15 (7)2.894 (6)178 (7)
O1W—H1WA···O1v0.84 (8)1.87 (8)2.661 (5)156 (8)

Symmetry codes: (iv) −x, y+1/2, −z−3/2; (v) −x, −y−1, −z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2187).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). Process-Auto Rigaku Americas Corporation, The Woodlands, Texas, USA.
  • Rigaku (2006). SCXmini Benchtop Crystallography System Software Rigaku Americas Corporation, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, X.-Y., Wang, Z.-M. & Gao, S. (2008). Chem. Commun.37 281–294. [PubMed]
  • Zeng, Y.-F., Hu, X., Liu, F.-C. & Bu, X.-H. (2009). Chem. Soc. Rev.38, 469–480. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography