PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1814.
Published online 2010 June 26. doi:  10.1107/S1600536810024190
PMCID: PMC3006682

3-Ethyl­sulfinyl-5-iodo-2-phenyl-1-benzofuran

Abstract

In the title compound, C16H13IO2S, the phenyl ring is rotated out of the benzofuran plane, as indicated by the dihedral angle of 32.56 (6)°. The crystal structure is stabilized by an I(...)O halogen inter­action [3.200 (2) Å].

Related literature

For the crystal structures of similar 2-aryl-3-ethyl­sulfinyl-5-halo-1-benzofuran derivatives, see: Choi et al. (2010a [triangle],b [triangle]). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006 [triangle]); Galal et al. (2009 [triangle]); Khan et al. (2005 [triangle]). For natural products with benzofuran rings, see: Akgul & Anil (2003 [triangle]); Soekamto et al. (2003 [triangle]). For a review of halogen bonding, see: Politzer et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1814-scheme1.jpg

Experimental

Crystal data

  • C16H13IO2S
  • M r = 396.22
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1814-efi1.jpg
  • a = 11.7297 (4) Å
  • b = 7.4560 (2) Å
  • c = 34.0313 (9) Å
  • V = 2976.26 (15) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.29 mm−1
  • T = 296 K
  • 0.02 × 0.02 × 0.02 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.954, T max = 0.967
  • 14370 measured reflections
  • 3415 independent reflections
  • 3106 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.068
  • S = 1.15
  • 3415 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.97 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024190/kp2264sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024190/kp2264Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Dong-eui University Foundation Grant (2010).

supplementary crystallographic information

Comment

The compounds involving benzofuran skeleton show various pharmacological properties such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), antimicrobial (Khan et al., 2005) activities.

These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 2-aryl-3-ethylsulfinyl-5-halo-1-benzofuran analogues (Choiet al., 2010a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.005 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the phenyl ring is 32.56 (6)°. The crystal packing (Fig. 2) is stabilized by I···O halogen–bonding interactions between the iodine and the oxygen of the S═O unit [I···O2i = 3.200 (2) Å; C4–I···O2i = 176.44 (8)°] (Politzer et al., 2007).

Experimental

77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 3-ethylsulfanyl-5-iodo-2-phenyl-1-benzofuran (380 mg, 1.0 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colourless solid [yield 79%, m.p. 419-420 K; Rf = 0.5 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl, 0.97 Å for methylene and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
I···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1, - y, - z + 1 .]

Crystal data

C16H13IO2SF(000) = 1552
Mr = 396.22Dx = 1.769 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8139 reflections
a = 11.7297 (4) Åθ = 2.4–27.5°
b = 7.4560 (2) ŵ = 2.29 mm1
c = 34.0313 (9) ÅT = 296 K
V = 2976.26 (15) Å3Block, colourless
Z = 80.02 × 0.02 × 0.02 mm

Data collection

Bruker SMART APEXII CCD diffractometer3415 independent reflections
Radiation source: rotating anode3106 reflections with I > 2σ(I)
graphite multilayerRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.1°
[var phi] and ω scansh = −15→9
Absorption correction: multi-scan (SADABS; Bruker, 2009)k = −8→9
Tmin = 0.954, Tmax = 0.967l = −43→44
14370 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: difference Fourier map
wR(F2) = 0.068H-atom parameters constrained
S = 1.15w = 1/[σ2(Fo2) + (0.026P)2 + 3.2745P] where P = (Fo2 + 2Fc2)/3
3415 reflections(Δ/σ)max = 0.002
182 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = −0.97 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I0.337055 (15)0.11075 (3)0.528788 (5)0.03128 (7)
S0.56486 (5)0.15154 (8)0.360798 (17)0.02225 (13)
O10.23461 (14)0.2567 (2)0.35329 (5)0.0259 (4)
O20.58668 (16)−0.0183 (3)0.38324 (6)0.0318 (4)
C10.4196 (2)0.2055 (3)0.36723 (7)0.0217 (5)
C20.3566 (2)0.1963 (3)0.40373 (7)0.0212 (5)
C30.3845 (2)0.1631 (3)0.44285 (7)0.0239 (5)
H30.45940.14200.45060.029*
C40.2959 (2)0.1628 (4)0.46975 (7)0.0261 (5)
C50.1832 (2)0.1945 (4)0.45888 (8)0.0296 (6)
H50.12630.19370.47790.036*
C60.1550 (2)0.2274 (4)0.41965 (8)0.0288 (6)
H60.08020.24830.41180.035*
C70.2435 (2)0.2273 (3)0.39332 (7)0.0244 (5)
C80.34345 (19)0.2429 (3)0.33829 (7)0.0219 (5)
C90.3539 (2)0.2680 (3)0.29579 (7)0.0226 (5)
C100.2650 (2)0.2139 (3)0.27091 (8)0.0289 (5)
H100.19900.16390.28140.035*
C110.2760 (3)0.2353 (4)0.23078 (8)0.0353 (6)
H110.21710.19900.21430.042*
C120.3734 (3)0.3100 (4)0.21470 (8)0.0346 (6)
H120.38020.32260.18760.042*
C130.4609 (3)0.3660 (4)0.23919 (8)0.0320 (6)
H130.52610.41760.22860.038*
C140.4512 (2)0.3451 (3)0.27951 (7)0.0273 (5)
H140.51010.38290.29580.033*
C150.6250 (2)0.3317 (4)0.38974 (8)0.0314 (6)
H15A0.59000.33150.41560.038*
H15B0.70600.31060.39310.038*
C160.6077 (3)0.5131 (4)0.37097 (10)0.0434 (7)
H16A0.64740.51720.34630.065*
H16B0.63690.60470.38800.065*
H16C0.52780.53270.36660.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I0.03590 (12)0.03674 (12)0.02121 (10)0.00703 (7)0.00679 (6)0.00190 (7)
S0.0199 (3)0.0276 (3)0.0193 (3)0.0033 (2)0.0005 (2)0.0016 (2)
O10.0206 (8)0.0319 (9)0.0251 (8)0.0007 (7)−0.0023 (7)0.0016 (7)
O20.0311 (10)0.0325 (10)0.0318 (10)0.0093 (8)0.0016 (8)0.0083 (8)
C10.0209 (11)0.0235 (12)0.0208 (11)−0.0001 (9)0.0002 (9)0.0007 (9)
C20.0212 (11)0.0198 (12)0.0226 (11)0.0016 (9)0.0029 (9)0.0022 (9)
C30.0223 (12)0.0251 (12)0.0242 (12)0.0042 (10)0.0013 (9)0.0007 (10)
C40.0301 (13)0.0252 (12)0.0231 (12)0.0039 (10)0.0038 (10)0.0010 (10)
C50.0262 (13)0.0328 (15)0.0299 (13)0.0005 (11)0.0081 (10)−0.0004 (11)
C60.0192 (12)0.0349 (14)0.0322 (14)0.0021 (10)−0.0003 (10)0.0002 (11)
C70.0242 (11)0.0233 (12)0.0256 (12)0.0008 (10)−0.0012 (10)0.0024 (10)
C80.0199 (11)0.0208 (11)0.0250 (12)−0.0001 (9)−0.0018 (9)0.0003 (9)
C90.0256 (12)0.0204 (12)0.0217 (12)0.0026 (9)−0.0043 (9)0.0008 (9)
C100.0313 (14)0.0251 (13)0.0304 (13)−0.0039 (11)−0.0077 (11)0.0032 (10)
C110.0465 (17)0.0304 (14)0.0289 (13)−0.0046 (12)−0.0144 (12)0.0017 (11)
C120.0563 (18)0.0251 (13)0.0226 (12)0.0014 (13)−0.0035 (12)0.0027 (10)
C130.0372 (15)0.0298 (14)0.0291 (13)0.0016 (11)0.0048 (11)0.0067 (11)
C140.0282 (13)0.0269 (13)0.0269 (13)−0.0005 (10)−0.0055 (10)0.0043 (10)
C150.0236 (12)0.0421 (16)0.0284 (13)−0.0054 (12)−0.0048 (10)−0.0047 (12)
C160.0392 (16)0.0340 (16)0.057 (2)−0.0074 (13)−0.0056 (15)−0.0078 (14)

Geometric parameters (Å, °)

I—C42.102 (2)C8—C91.464 (3)
I—O2i3.200 (2)C9—C141.393 (4)
S—O21.500 (2)C9—C101.402 (3)
S—C11.764 (2)C10—C111.381 (4)
S—C151.809 (3)C10—H100.9300
O1—C81.379 (3)C11—C121.384 (4)
O1—C71.384 (3)C11—H110.9300
C1—C81.359 (3)C12—C131.386 (4)
C1—C21.447 (3)C12—H120.9300
C2—C71.392 (3)C13—C141.385 (4)
C2—C31.393 (3)C13—H130.9300
C3—C41.385 (3)C14—H140.9300
C3—H30.9300C15—C161.510 (4)
C4—C51.393 (4)C15—H15A0.9700
C5—C61.397 (4)C15—H15B0.9700
C5—H50.9300C16—H16A0.9600
C6—C71.372 (4)C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C4—I—O2i176.44 (8)C14—C9—C8121.0 (2)
O2—S—C1107.1 (1)C10—C9—C8119.8 (2)
O2—S—C15106.4 (1)C11—C10—C9119.6 (3)
C1—S—C1598.0 (1)C11—C10—H10120.2
C8—O1—C7106.4 (2)C9—C10—H10120.2
C8—C1—C2107.2 (2)C10—C11—C12121.0 (3)
C8—C1—S126.3 (2)C10—C11—H11119.5
C2—C1—S126.1 (2)C12—C11—H11119.5
C7—C2—C3119.8 (2)C11—C12—C13119.6 (3)
C7—C2—C1105.1 (2)C11—C12—H12120.2
C3—C2—C1135.1 (2)C13—C12—H12120.2
C4—C3—C2117.1 (2)C14—C13—C12120.1 (3)
C4—C3—H3121.4C14—C13—H13120.0
C2—C3—H3121.4C12—C13—H13120.0
C3—C4—C5122.5 (2)C13—C14—C9120.5 (2)
C3—C4—I117.4 (2)C13—C14—H14119.8
C5—C4—I120.2 (2)C9—C14—H14119.8
C4—C5—C6120.6 (2)C16—C15—S112.5 (2)
C4—C5—H5119.7C16—C15—H15A109.1
C6—C5—H5119.7S—C15—H15A109.1
C7—C6—C5116.4 (2)C16—C15—H15B109.1
C7—C6—H6121.8S—C15—H15B109.1
C5—C6—H6121.8H15A—C15—H15B107.8
C6—C7—O1125.8 (2)C15—C16—H16A109.5
C6—C7—C2123.7 (2)C15—C16—H16B109.5
O1—C7—C2110.4 (2)H16A—C16—H16B109.5
C1—C8—O1110.8 (2)C15—C16—H16C109.5
C1—C8—C9133.4 (2)H16A—C16—H16C109.5
O1—C8—C9115.7 (2)H16B—C16—H16C109.5
C14—C9—C10119.2 (2)
O2—S—C1—C8−128.5 (2)C1—C2—C7—O1−0.8 (3)
C15—S—C1—C8121.5 (2)C2—C1—C8—O1−0.7 (3)
O2—S—C1—C243.2 (2)S—C1—C8—O1172.33 (17)
C15—S—C1—C2−66.8 (2)C2—C1—C8—C9−179.8 (3)
C8—C1—C2—C70.9 (3)S—C1—C8—C9−6.8 (4)
S—C1—C2—C7−172.14 (19)C7—O1—C8—C10.2 (3)
C8—C1—C2—C3179.7 (3)C7—O1—C8—C9179.5 (2)
S—C1—C2—C36.7 (4)C1—C8—C9—C14−33.4 (4)
C7—C2—C3—C40.0 (4)O1—C8—C9—C14147.5 (2)
C1—C2—C3—C4−178.7 (3)C1—C8—C9—C10146.6 (3)
C2—C3—C4—C5−0.2 (4)O1—C8—C9—C10−32.5 (3)
C2—C3—C4—I179.54 (19)C14—C9—C10—C111.0 (4)
C3—C4—C5—C60.4 (4)C8—C9—C10—C11−179.0 (2)
I—C4—C5—C6−179.4 (2)C9—C10—C11—C12−0.2 (4)
C4—C5—C6—C7−0.3 (4)C10—C11—C12—C13−0.7 (5)
C5—C6—C7—O1180.0 (2)C11—C12—C13—C140.8 (4)
C5—C6—C7—C20.1 (4)C12—C13—C14—C90.0 (4)
C8—O1—C7—C6−179.5 (3)C10—C9—C14—C13−0.9 (4)
C8—O1—C7—C20.4 (3)C8—C9—C14—C13179.1 (2)
C3—C2—C7—C60.0 (4)O2—S—C15—C16−179.1 (2)
C1—C2—C7—C6179.1 (2)C1—S—C15—C16−68.5 (2)
C3—C2—C7—O1−179.8 (2)

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2264).

References

  • Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [PubMed]
  • Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2 SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o770. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o886. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [PubMed]
  • Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796—4805. [PubMed]
  • Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model 13, 305–311. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography