PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1691–o1692.
Published online 2010 June 18. doi:  10.1107/S1600536810022506
PMCID: PMC3006680

N-[(2S)-2-(4-Bromo­phen­yl)-4-oxo-1,3-thia­zolidin-3-yl]pyridine-3-carboxamide

Abstract

In the title compound, C15H12BrN3O2S, the dihedral angle between the pyridine and benzene rings is 73.17 (19)°. The five-membered 1,3-thia­zolidine ring has an envelope conformation, with the S atom displaced by 0.196 (1) Å from the mean plane of the four other ring atoms. An intra­molecular C—H(...)N inter­action occurs. The crystal structure is stabil­ized by inter­molecular N—H(...)O and C—H(...)O hydrogen bonds and C—H(...)π inter­actions. In addition, a weak π–π stacking inter­action is also observed between the 1,3-thia­zolidine and pyridine rings [centroid–centroid distance = 3.805 (2) Å].

Related literature

For the cytoprotective and anti­viral properties of nicotinamide, see: Gaudineau & Auclair (2004 [triangle]); Moell et al. (2009 [triangle]). For 3-pyridine­carboxamide derivatives with anti­tumor activity, see: Elbaum et al. (2003 [triangle]). For the various biological activities of thia­zolidinones, see: Capan et al. (1999 [triangle]) and Ozkırımlı et al. (2009 [triangle]) (anti­fungal); Guzel et al. (2006 [triangle]) (anti­tuberculosis); Rawal et al. (2007 [triangle]) (RT Inhibitor); Vanderlinden et al. (2010 [triangle]) (anti­viral). For standard bond-length data, see: Allen et al. (1987 [triangle]). For puckering and asymmetry parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1691-scheme1.jpg

Experimental

Crystal data

  • C15H12BrN3O2S
  • M r = 378.25
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-66-o1691-efi1.jpg
  • a = 24.9588 (9) Å
  • c = 12.8013 (5) Å
  • V = 6906.1 (4) Å3
  • Z = 18
  • Mo Kα radiation
  • μ = 2.82 mm−1
  • T = 296 K
  • 0.28 × 0.23 × 0.19 mm

Data collection

  • Stoe IPDS 2 diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.505, T max = 0.616
  • 13554 measured reflections
  • 3174 independent reflections
  • 1963 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.085
  • S = 0.95
  • 3174 reflections
  • 202 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810022506/lh5067sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022506/lh5067Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). HD and SO acknowledge the Scientific Research Projects Coordination Unit of Istanbul University (Project number T-3691).

supplementary crystallographic information

Comment

Development of new active compounds for viral infections is a high priority goal. The rapid onset of resistance and hypersensitivity reactions limit the use of antiviral compounds and therefore, there is an ongoing need for novel antiviral agents. A number of diverse chemical structures have been shown to be potent RT Inhibitors. Nicotinamide is gaining attention for its cytoprotective and antiviral properties (Gaudineau et al., 2004). Antiviral effect of nicotinamide and its inhibitory effect on enterovirus induced chemokine secretion have been recently shown (Moell et al., 2009). Furthermore, 3-pyridinecarboxamide derivatives with antitumor activity have been reported (Elbaum et al., 2003). Thiazolidinones exhibit various biological activities such as antifungal (Capan et al., 1999; Ozkırımlı et al., 2009); antituberculosis (Guzel et al., 2006); RT Inhibitor (Rawal et al., 2007); antiviral (Vanderlinden et al., 2010). We combine these two moities as part of an ongoing project directed towards the design and synthesis of bioactive molecules bearing 4-thiazolidinone and pyridine-3-carboxamide scaffolds together.

In the title molecule (I) shown in Fig. 1, the bond lengths and the bond angles are in the normal ranges (Allen et al., 1987). The C2—C1—C7—N1, C2—C1—C7—S1, N1—N2—C10—O2 and N1—N2—C10—C11 torsion angles are 40.2 (4), -76.2 (3), -0.7 (5) and -179.7 (3) °, respectively. The dihedral angle between the pyridine (N3/C11–C15) and benzene (C1–C6) rings is 73.17 (19) °. The five-membered 1,3-thiazolidine ring has an envelope conformation, with atom S1 displaced by -0.196 (1) Å from the S1/N1/C7–C9 plane [the puckering parameters (Cremer & Pople, 1975) are Q2 = 0.361 (3) Å and [var phi]2 = 188.0 (5) °].

The crystal structure is stabilized by intermolecular N—H···O and C—H···O hydrogen bonding interactions (Table 1, Fig. 2) and a C—H···π interactions (Table 1). A weak π-π stacking interaction is observed between the 1,3-thiazolidine and pyridine rings [Cg2···Cg2(2/3 - x, 7/3 - y, 1/3 - z) = 3.805 (2) Å, where Cg1 and Cg2 are the centroids of the S1/N1/C7–C9 1,3-thiazolidine and N3/C11–C15 pyridine rings, respectively].

Experimental

0.01 mol of N'-(4-bromobenzylidine)pyridine-3-carbohydrazide was reacted with 0.03 mol of mercaptoacetic acid in anhydrous benzene for 8 h using a Dean-Stark trap. Excess benzene was removed under reduced pressure. The residue was triturated with saturated sodium bicarbonate solution. The separated solid was filtered, washed with water and crystallized from methanol. White crystalline solid. Yield: 60.84%; m.p.: 446.1–450.0 K. UV (EtOH) max: 202.6, 221.2, 264.8 nm. IR (KBr) υ: 1666 (amide C=O), 1687 (thia C=O); 1H-NMR (DMSO-d6, 400 MHz): 3.80 (1H, d, J=16 Hz, H5-thia.), 3.95 (1H, dd, J=15.8, 2.8 Hz, H5-thia.), 5.92 (1H, s, H2-thia.), 7.46 (2H, d, J=8.4 Hz, 2-C6H4-(H2,6)-thia.), 7.47–7.49 (1H, m, H5-pyridine), 7.56 (1H, d, J=8.8 Hz, 2-C6H4-(H3,5)-thia.), 8.08 (1H, dt, J=8.4, 1.6, 1.6 Hz, H4-pyridine), 8.71 (1H, dd, J=4.6, 1.6 Hz, H6-pyridine), 8.87 (1H, d, J=1.6 Hz, H2-pyridine), 10.93 (1H, s, CONH); ESI+ (m/z): 380.23 ([MH+2]+, 100), 378.24([MH]+, 98.71). Analysis calculated for C15H12BrN3O2S: C 47.63, H 3.20, N 11.11%. Found: C 47.39, H 3.09, N 10.98%.

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located from the Fourier synthesis and restrained to 0.86 (2) Å, and refined with Uiso(H) = 1.5Ueq(N).

Figures

Fig. 1.
The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
Fig. 2.
View of the packing and hydrogen bonding interactions of (I). All hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C15H12BrN3O2SDx = 1.637 Mg m3
Mr = 378.25Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 10912 reflections
Hall symbol: -R 3θ = 1.6–28.0°
a = 24.9588 (9) ŵ = 2.82 mm1
c = 12.8013 (5) ÅT = 296 K
V = 6906.1 (4) Å3Block, colourless
Z = 180.28 × 0.23 × 0.19 mm
F(000) = 3420

Data collection

Stoe IPDS 2 diffractometer3174 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1963 reflections with I > 2σ(I)
plane graphiteRint = 0.050
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.6°
ω scansh = −30→27
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −31→31
Tmin = 0.505, Tmax = 0.616l = −15→16
13554 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 0.95w = 1/[σ2(Fo2) + (0.0375P)2] where P = (Fo2 + 2Fc2)/3
3174 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = −0.35 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.04324 (2)0.93003 (2)0.13333 (3)0.0833 (2)
S10.18291 (4)0.97254 (4)0.63617 (6)0.0594 (3)
O10.35556 (11)1.03443 (11)0.58153 (16)0.0609 (9)
O20.33205 (10)1.15286 (10)0.51669 (15)0.0561 (8)
N10.27161 (11)1.03012 (11)0.50268 (17)0.0459 (8)
N20.30533 (11)1.06767 (12)0.41953 (17)0.0456 (8)
N30.41259 (16)1.17793 (16)0.1703 (2)0.0802 (13)
C10.16764 (13)0.99737 (13)0.4306 (2)0.0403 (9)
C20.16483 (14)0.95013 (14)0.3696 (2)0.0496 (11)
C30.12676 (15)0.92888 (15)0.2825 (2)0.0533 (11)
C40.09162 (14)0.95549 (15)0.2568 (2)0.0522 (11)
C50.09214 (14)1.00079 (15)0.3177 (2)0.0534 (11)
C60.13042 (14)1.02166 (14)0.4045 (2)0.0474 (10)
C70.21047 (13)1.02331 (14)0.5225 (2)0.0444 (10)
C80.30194 (16)1.02317 (14)0.5850 (2)0.0488 (11)
C90.26115 (15)1.00121 (17)0.6800 (2)0.0610 (11)
C100.33513 (13)1.13027 (15)0.4341 (2)0.0443 (10)
C110.37035 (14)1.16854 (14)0.3424 (2)0.0451 (10)
C120.39270 (18)1.23136 (16)0.3450 (3)0.0687 (14)
C130.4255 (2)1.26670 (18)0.2588 (3)0.0816 (16)
C140.43328 (19)1.2376 (2)0.1757 (3)0.0802 (17)
C150.38243 (17)1.14490 (17)0.2539 (3)0.0653 (14)
H20.188700.932500.387400.0600*
H2A0.3055 (19)1.0477 (17)0.366 (2)0.1000*
H30.125000.897100.241900.0640*
H50.067101.017400.301100.0640*
H60.131001.052600.445900.0570*
H70.215501.063700.541100.0530*
H9A0.273101.035000.728800.0730*
H9B0.264800.968600.714700.0730*
H120.386101.249800.402900.0820*
H130.441601.309300.258300.0980*
H140.454901.261700.118500.0960*
H150.368401.102700.252500.0780*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0755 (3)0.1114 (4)0.0638 (2)0.0473 (3)−0.0204 (2)−0.0167 (2)
S10.0544 (5)0.0724 (6)0.0463 (4)0.0279 (5)0.0077 (4)0.0159 (4)
O10.0534 (15)0.0774 (17)0.0589 (13)0.0380 (13)−0.0050 (11)0.0014 (11)
O20.0534 (14)0.0621 (14)0.0462 (12)0.0240 (12)0.0031 (9)−0.0101 (10)
N10.0430 (14)0.0531 (16)0.0386 (12)0.0218 (13)0.0041 (11)0.0096 (11)
N20.0462 (15)0.0478 (16)0.0370 (13)0.0192 (13)0.0057 (11)0.0030 (11)
N30.095 (3)0.068 (2)0.0646 (18)0.031 (2)0.0335 (17)0.0100 (16)
C10.0415 (17)0.0418 (17)0.0388 (14)0.0217 (14)0.0059 (12)0.0077 (12)
C20.0474 (19)0.052 (2)0.0564 (17)0.0300 (16)0.0032 (14)0.0058 (14)
C30.053 (2)0.052 (2)0.0570 (18)0.0278 (17)0.0042 (15)−0.0056 (15)
C40.0463 (19)0.058 (2)0.0486 (16)0.0233 (17)0.0024 (14)0.0021 (15)
C50.0477 (19)0.056 (2)0.0630 (19)0.0309 (17)−0.0008 (15)0.0061 (16)
C60.0514 (19)0.0434 (18)0.0514 (16)0.0268 (16)0.0050 (14)0.0040 (13)
C70.0421 (18)0.0465 (18)0.0456 (15)0.0229 (15)0.0027 (13)0.0031 (13)
C80.058 (2)0.0515 (19)0.0404 (16)0.0299 (17)−0.0024 (14)−0.0005 (13)
C90.064 (2)0.076 (2)0.0430 (17)0.035 (2)−0.0016 (15)0.0114 (16)
C100.0359 (16)0.053 (2)0.0425 (16)0.0212 (15)−0.0028 (12)−0.0033 (14)
C110.0401 (17)0.0482 (19)0.0452 (16)0.0207 (15)−0.0005 (13)0.0004 (13)
C120.080 (3)0.056 (2)0.058 (2)0.025 (2)0.0008 (18)−0.0047 (17)
C130.098 (3)0.044 (2)0.078 (3)0.017 (2)0.006 (2)0.0110 (19)
C140.078 (3)0.071 (3)0.070 (3)0.021 (2)0.021 (2)0.011 (2)
C150.076 (3)0.057 (2)0.0571 (19)0.029 (2)0.0231 (17)0.0053 (17)

Geometric parameters (Å, °)

Br1—C41.896 (3)C5—C61.386 (4)
S1—C71.823 (3)C8—C91.503 (4)
S1—C91.801 (4)C10—C111.491 (4)
O1—C81.223 (5)C11—C121.377 (5)
O2—C101.219 (3)C11—C151.379 (5)
N1—N21.390 (3)C12—C131.394 (6)
N1—C71.471 (5)C13—C141.356 (6)
N1—C81.358 (4)C2—H20.9300
N2—C101.366 (4)C3—H30.9300
N3—C141.312 (6)C5—H50.9300
N3—C151.331 (5)C6—H60.9300
N2—H2A0.85 (3)C7—H70.9800
C1—C61.380 (5)C9—H9A0.9700
C1—C71.501 (4)C9—H9B0.9700
C1—C21.386 (4)C12—H120.9300
C2—C31.387 (4)C13—H130.9300
C3—C41.379 (5)C14—H140.9300
C4—C51.368 (4)C15—H150.9300
Br1···H5i3.1900C15···O1vi3.399 (5)
S1···C6ii3.524 (4)C1···H6ii2.9800
S1···N3iii3.003 (3)C2···H7ii2.7800
S1···C14iii3.644 (5)C3···H7ii2.9100
S1···H6ii3.0300C4···H14viii3.0000
O1···N22.757 (4)C5···H5i3.0700
O1···C103.281 (4)C5···H14viii2.9100
O1···N2iv2.914 (4)C6···H14viii3.0100
O1···C2iv3.369 (4)C6···H6ii2.9700
O1···C15iv3.399 (6)C8···H2Aiv3.00 (6)
O2···C2v3.415 (6)C10···H3iv2.9500
O2···C83.062 (4)C10···H72.9300
O2···N12.659 (3)C12···H9Bv3.0200
O2···C73.140 (4)C15···H2A2.64 (4)
O2···C3iv3.237 (6)H2···N12.7100
O1···H15iv2.5000H2···O2ii2.7500
O1···H2Aiv2.07 (5)H2A···C152.64 (4)
O2···H72.6500H2A···H152.0700
O2···H2v2.7500H2A···O1vi2.07 (3)
O2···H122.5600H2A···C8vi3.00 (4)
O2···H3iv2.4300H3···O2vi2.4300
N1···O22.659 (3)H3···C10vi2.9500
N2···O12.757 (4)H5···Br1ix3.1900
N2···C23.320 (4)H5···C5ix3.0700
N2···O1vi2.914 (4)H6···H72.3300
N3···C9vii3.262 (5)H6···S1v3.0300
N3···S1vii3.003 (3)H6···C1v2.9800
N1···H22.7100H6···C6v2.9700
N2···H152.5400H7···O22.6500
N3···H9Bvii2.8500H7···C102.9300
C2···N23.320 (4)H7···H62.3300
C2···O2ii3.415 (4)H7···C2v2.7800
C2···O1vi3.369 (5)H7···C3v2.9100
C3···O2vi3.237 (5)H9B···C12ii3.0200
C6···S1v3.524 (3)H9B···N3iii2.8500
C7···O23.140 (4)H12···O22.5600
C8···O23.062 (4)H14···C4viii3.0000
C9···N3iii3.262 (5)H14···C5viii2.9100
C10···O13.281 (4)H14···C6viii3.0100
C14···S1vii3.644 (4)H15···N22.5400
C14···C15viii3.507 (7)H15···H2A2.0700
C15···C14viii3.507 (7)H15···O1vi2.5000
C7—S1—C990.87 (15)C10—C11—C15123.9 (3)
N2—N1—C7117.0 (2)C11—C12—C13118.5 (3)
N2—N1—C8119.5 (3)C12—C13—C14118.6 (4)
C7—N1—C8117.6 (2)N3—C14—C13124.7 (4)
N1—N2—C10117.8 (2)N3—C15—C11124.9 (3)
C14—N3—C15116.1 (3)C1—C2—H2120.00
C10—N2—H2A129 (2)C3—C2—H2120.00
N1—N2—H2A114 (2)C2—C3—H3120.00
C2—C1—C7122.0 (3)C4—C3—H3120.00
C2—C1—C6118.6 (3)C4—C5—H5120.00
C6—C1—C7119.4 (3)C6—C5—H5120.00
C1—C2—C3120.8 (3)C1—C6—H6119.00
C2—C3—C4119.1 (3)C5—C6—H6119.00
C3—C4—C5121.1 (3)S1—C7—H7109.00
Br1—C4—C3119.3 (2)N1—C7—H7109.00
Br1—C4—C5119.6 (3)C1—C7—H7109.00
C4—C5—C6119.2 (3)S1—C9—H9A110.00
C1—C6—C5121.2 (3)S1—C9—H9B110.00
S1—C7—C1112.7 (2)C8—C9—H9A110.00
S1—C7—N1103.1 (2)C8—C9—H9B110.00
N1—C7—C1112.9 (2)H9A—C9—H9B109.00
N1—C8—C9110.8 (3)C11—C12—H12121.00
O1—C8—C9125.3 (3)C13—C12—H12121.00
O1—C8—N1123.9 (3)C12—C13—H13121.00
S1—C9—C8107.2 (2)C14—C13—H13121.00
N2—C10—C11115.8 (2)N3—C14—H14118.00
O2—C10—N2121.6 (3)C13—C14—H14118.00
O2—C10—C11122.7 (3)N3—C15—H15118.00
C12—C11—C15117.2 (3)C11—C15—H15118.00
C10—C11—C12118.9 (3)
C7—S1—C9—C8−26.5 (3)C7—C1—C2—C3−177.2 (3)
C9—S1—C7—N129.0 (2)C6—C1—C7—S1104.9 (3)
C9—S1—C7—C1151.0 (3)C6—C1—C7—N1−138.8 (3)
C7—N1—N2—C1078.1 (4)C1—C2—C3—C40.2 (5)
C8—N1—C7—S1−26.4 (3)C2—C3—C4—C5−2.3 (5)
N2—N1—C7—C158.8 (3)C2—C3—C4—Br1176.3 (2)
N2—N1—C7—S1−179.29 (19)Br1—C4—C5—C6−176.3 (2)
N2—N1—C8—O1−19.3 (4)C3—C4—C5—C62.4 (5)
C7—N1—C8—O1−171.5 (3)C4—C5—C6—C1−0.3 (5)
N2—N1—C8—C9159.6 (3)O1—C8—C9—S1−165.2 (3)
C7—N1—C8—C97.4 (4)N1—C8—C9—S116.0 (3)
C8—N1—C7—C1−148.3 (3)N2—C10—C11—C12169.1 (4)
C8—N1—N2—C10−74.3 (4)O2—C10—C11—C12−9.9 (6)
N1—N2—C10—O2−0.7 (5)O2—C10—C11—C15169.9 (4)
N1—N2—C10—C11−179.7 (3)N2—C10—C11—C15−11.1 (6)
C14—N3—C15—C111.9 (7)C15—C11—C12—C130.3 (6)
C15—N3—C14—C13−0.6 (8)C10—C11—C15—N3178.5 (4)
C6—C1—C2—C31.8 (5)C10—C11—C12—C13−179.9 (4)
C2—C1—C6—C5−1.7 (5)C12—C11—C15—N3−1.8 (7)
C2—C1—C7—N140.2 (4)C11—C12—C13—C140.8 (7)
C7—C1—C6—C5177.3 (3)C12—C13—C14—N3−0.7 (8)
C2—C1—C7—S1−76.2 (3)

Symmetry codes: (i) −x+y−1, −x+1, z; (ii) y−1, −x+y, −z+1; (iii) −y+4/3, xy+5/3, z+2/3; (iv) −x+y−1/3, −x+4/3, z+1/3; (v) xy+1, x+1, −z+1; (vi) −y+4/3, xy+5/3, z−1/3; (vii) −x+y−1/3, −x+4/3, z−2/3; (viii) −x+2/3, −y+7/3, −z+1/3; (ix) −y+1, xy+2, z.

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1vi0.85 (3)2.07 (3)2.914 (4)172 (4)
C3—H3···O2vi0.932.433.237 (5)146
C15—H15···N20.932.542.864 (5)101
C15—H15···O1vi0.932.503.399 (5)162
C14—H14···Cg3i0.932.793.692 (4)164

Symmetry codes: (vi) −y+4/3, xy+5/3, z−1/3; i.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5067).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Capan, G., Ulusoy, N., Ergenç, N. & Kiraz, M. (1999). Monatsh. Chem.130, 1399–1407.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Elbaum, D., Askew, B., Booker, S., Germain, J., Habgood, G., Handley, M., Kim, T. S., Li, A., Nishimura, N., Patel, V. F., Yuan, C. C. & Kim, J. L. (2003). US Patent Appl. Publ. US 134 836.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gaudineau, C. & Auclair, K. (2004). Biochem. Biophys. Res. Commun.317, 950–956. [PubMed]
  • Guzel, O., İlhan, E. & Salman, S. (2006). Monatsh. Chem.137, 795–801.
  • Moell, A., Skog, O., Ahlin, E., Korsgren, O. & Frisk, G. (2009). J. Med. Virol.81, 1082–1087. [PubMed]
  • Ozkırımlı, S., Kazan, F. & Tunalı, Y. (2009). J. Enz. Inhib. Med. Chem.24, 447–452. [PubMed]
  • Rawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & De Clercq, E. (2007). Bioorg. Med. Chem.15, 1725–1731. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  • Vanderlinden, E., Goktas, F., Cesur, Z., Froeyen, M., Reed, M. L., Russell, C. J., Cesur, N. & Naesens, L. (2010). J. Virol.84, 4277–4288. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography