PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1796.
Published online 2010 June 26. doi:  10.1107/S1600536810023093
PMCID: PMC3006678

8-[(1E)-1-(2-Aminophenyl­iminio)eth­yl]-2-oxo-2H-chromen-7-olate

Abstract

The title Schiff base, C17H14N2O3, exists as an NH tautomer with the H atom of the phenol group transferred to the imine N atom. The iminium H atom is involved in a strong intra­molecular N+—H(...)O hydrogen bond to the phenolate O atom, forming an S(6) motif. In the crystal structure, N—H(...)O hydrogen bonds form a C(9) chain parallel to [100] and a C(11) chain parallel to [010], while C—H(...)O hydrogen bonds form a C(11) chain parallel to [010]. The combination of N—H(...)O and C—H(...)O hydrogen bonds generates R 4 3(30) rings parallel to the ab plane

Related literature

For related structures, see: Patil et al. (2010 [triangle]); Aazam et al. (2006 [triangle]); Filarowski (2005 [triangle]); El Husseiny et al. (2008 [triangle]); Aazam et al. (2008 [triangle]); Karabıyık et al. (2008 [triangle]). For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1796-scheme1.jpg

Experimental

Crystal data

  • C17H14N2O3
  • M r = 294.30
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1796-efi1.jpg
  • a = 7.5462 (3) Å
  • b = 18.9324 (11) Å
  • c = 20.0445 (9) Å
  • V = 2863.7 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 K
  • 0.44 × 0.29 × 0.20 mm

Data collection

  • Stoe IPDS 2 diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.962, T max = 0.984
  • 25561 measured reflections
  • 2868 independent reflections
  • 1972 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.095
  • S = 1.00
  • 2868 reflections
  • 212 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.11 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023093/gk2282sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023093/gk2282Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge King Abdulaziz University for financial support and the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Coumarin and its derivatives have been a subject of numerous investigations due to their diverse biological activities, interesting photophysical, photochemical and metal binding properties. Schiff base complexes play an important role in coordination chemistry (Patil et al., 2010). We have recently reported synthesis, single-crystal X-ray diffraction studies, characterization and antibacterial activity of a Schiff-base ligand incorporating coumarin moiety and their metal complexes (Aazam et al., 2006; El Husseiny, et al., 2008; Aazam et al., 2008). In this work, we would like to present an X-ray investigation of a newly synthesized coumarin Schiff base derived from 8-acetyl-7-hydroxycoumarin and o-phenylenediamine. We report here the crystal structure of (I) (Figure 1).

Schiff bases exhibit two well known tautomeric forms viz. OH and NH tautomers. NH tautomers can be regarded as a resonance hybrid of two canonical structures the non-charged quinoid and ionic zwitterionic forms. Our investigations show that compound (I) formula can be given as a combination of two canonical forms: phenolate with negative charge predominantly at the phenolate O atom or as chromen-8-ide with negative charge at the C atom. Compound I is a hyprid of two zwitterionic canonical forms (Fig. 2) having N+—H bond (0.952 Å) longer than standared interatomic separations observed in neutral N—H bonds (0.878 Å)(Karabıyık et al., 2008). Compound (I) crystallizes in the orthorhombic space group Pbca (No. 61) with one molecule per asymmetric unit. The iminium H atom is almost coplanar with the coumarin ring (deviation from the coumarin plane 0.0444 Å) and on the same side of the molecule as the phenolic O atom, allowing the formation of an intramolecular N—H···O hydrogen bond. A summary of bond lengths and angles of the ketoimine system is presented in Table 1.

In order to compare the bond lengths found in (I) with other molecules containing similar functional groups, a comparison with a previous search in the Cambridge Structural Database (CSD) was performed (Filarowski, 2005). The comparison with the mean bond lengths of similar molecules clearly tends to confirm that (I) is cis-ketoimine tauutomer and that the C7—N1 in agreement with double-bond character, the C10—O1 is 1.3040 Å, this bond is not double (keto group) and is one of the longest among similar iminium derivatives, also C7—C9 bond length is not a typical single-bond. Moreover C9—C14 ring is in agreement with the cyclohexadienide bond character. The intramolecular hydrogen bond produces S(6) motif (Bernstein et al., 1995). The amino atom N2 in the molecule at (x, y, z) acts as a hydrogen-bond donor (Table 1) to atom O1i so forming a C(9) chain running parallel to the [100] direction. Amino atom N2 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O2ii so forming a C(11) chain running parallel to the [010] direction. Similarly, atom C5 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O2iii so forming a C(11) chain running parallel to the [010] direction. The combination of N—H···O and C—H···O hydrogen bonds generates R43(30) rings parallel to the ab plane (Fig. 3).

Experimental

A clear solution of o-phenylenediamine (0.26 g, 2.5 mmol) in 10 ml of ethanol was added to a warm solution of 8-acetyl-7-hydroxy coumarin (0.5 g, 2.5 mmol) in the same solvent (30 ml). The resulting mixture was refluxed for 2–3 h. The yellow product was precipitated, filtered off and washed with ethanol followed by diethyl ether, dried in a vacuum desiccator and crystallized from chloroform/ethanol (2:1). Single crystals were obtained by slow evaporation of dichloromethane solution of I at room temperature; Yield (75%), m.p. 480 K. Purity of the ligand was checked using TLC; (methanol: benzene, 1:4).

Refinement

All H atoms bound to C atoms were refined using a riding model, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic C atoms and C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl C atoms. Amino H atoms bound to N atom were located in difference maps and refined freely. Other H atom bound to N atom was located in difference maps and refined subject to a DFIX restraint of N—H = 0.86 (2) Å.

Figures

Fig. 1.
A view of one molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are indicated by dashed lines.
Fig. 2.
Zwitterionic canonical forms of I.
Fig. 3.
Part of the crystal structure of (I), showing the formation of a hydrogen-bonded sheet built from C(9) and C(11) chains. For the sake of clarity, H atoms not involved in the motif shown have been omitted.

Crystal data

C17H14N2O3F(000) = 1232
Mr = 294.30Dx = 1.365 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25561 reflections
a = 7.5462 (3) Åθ = 2.0–26.7°
b = 18.9324 (11) ŵ = 0.10 mm1
c = 20.0445 (9) ÅT = 296 K
V = 2863.7 (2) Å3Prism, yellow
Z = 80.44 × 0.29 × 0.20 mm

Data collection

Stoe IPDS 2 diffractometer2868 independent reflections
Radiation source: fine-focus sealed tube1972 reflections with I > 2σ(I)
graphiteRint = 0.039
rotation method scansθmax = 26.2°, θmin = 2.0°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)h = −9→9
Tmin = 0.962, Tmax = 0.984k = −23→23
25561 measured reflectionsl = −24→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0515P)2 + ] where P = (Fo2 + 2Fc2)/3
2868 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3733 (2)0.81253 (7)0.38471 (7)0.0462 (4)
C20.5193 (2)0.83854 (7)0.41971 (8)0.0487 (4)
C30.4876 (2)0.89106 (8)0.46724 (8)0.0584 (4)
H30.58220.90950.49140.070*
C40.3197 (3)0.91605 (8)0.47909 (9)0.0632 (5)
H40.30190.95070.51130.076*
C50.1777 (3)0.89021 (9)0.44379 (9)0.0646 (5)
H50.06420.90730.45190.077*
C60.2051 (2)0.83870 (8)0.39613 (9)0.0581 (4)
H60.10980.82150.37160.070*
C70.44310 (18)0.69702 (7)0.33766 (7)0.0446 (3)
C80.4588 (2)0.66606 (8)0.40572 (8)0.0602 (4)
H8A0.41210.69870.43790.072*
H8B0.58130.65690.41540.072*
H8C0.39320.62270.40770.072*
C90.47034 (19)0.65822 (7)0.27529 (7)0.0442 (3)
C100.4368 (2)0.69219 (7)0.21251 (8)0.0491 (4)
C110.4623 (2)0.65452 (8)0.15220 (8)0.0584 (4)
H110.44020.67670.11170.070*
C120.5186 (2)0.58675 (8)0.15284 (9)0.0587 (4)
H120.53320.56300.11260.070*
C130.5555 (2)0.55134 (7)0.21273 (8)0.0525 (4)
C140.53174 (19)0.58766 (7)0.27212 (8)0.0455 (4)
C150.6172 (2)0.48034 (8)0.21610 (10)0.0641 (5)
H150.63070.45480.17680.077*
C160.6561 (2)0.44943 (8)0.27412 (10)0.0671 (5)
H160.69430.40270.27460.081*
C170.6397 (2)0.48719 (7)0.33552 (10)0.0588 (4)
N10.39971 (17)0.76316 (6)0.33146 (7)0.0488 (3)
N20.68956 (19)0.81302 (8)0.41013 (8)0.0631 (4)
O10.38245 (16)0.75749 (5)0.20935 (6)0.0603 (3)
O20.67878 (17)0.46798 (5)0.39135 (7)0.0735 (4)
O30.57044 (14)0.55503 (5)0.33133 (5)0.0541 (3)
H10.390 (3)0.7742 (10)0.2853 (8)0.087 (6)*
H2A0.715 (2)0.7907 (9)0.3703 (10)0.071 (5)*
H2B0.772 (3)0.8469 (11)0.4178 (11)0.099 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0615 (9)0.0363 (7)0.0409 (9)−0.0009 (6)0.0025 (7)0.0007 (6)
C20.0586 (9)0.0435 (7)0.0439 (9)−0.0018 (7)0.0053 (7)−0.0002 (6)
C30.0700 (11)0.0557 (8)0.0494 (10)−0.0061 (8)0.0042 (8)−0.0116 (7)
C40.0844 (13)0.0537 (9)0.0515 (10)0.0048 (8)0.0143 (9)−0.0090 (7)
C50.0651 (10)0.0662 (10)0.0623 (12)0.0133 (8)0.0086 (9)−0.0029 (9)
C60.0586 (10)0.0577 (9)0.0579 (11)0.0039 (7)−0.0008 (8)−0.0007 (8)
C70.0490 (8)0.0393 (7)0.0454 (9)−0.0045 (6)−0.0014 (7)0.0024 (6)
C80.0889 (12)0.0459 (8)0.0459 (10)0.0056 (8)0.0010 (9)0.0037 (7)
C90.0483 (8)0.0397 (7)0.0446 (9)−0.0056 (6)−0.0026 (6)−0.0011 (6)
C100.0563 (9)0.0455 (7)0.0454 (9)−0.0067 (6)−0.0048 (7)0.0001 (6)
C110.0734 (11)0.0588 (9)0.0431 (10)−0.0053 (8)−0.0043 (8)−0.0011 (7)
C120.0681 (10)0.0594 (9)0.0486 (11)−0.0077 (8)0.0003 (8)−0.0134 (7)
C130.0544 (9)0.0465 (8)0.0565 (11)−0.0054 (6)−0.0008 (7)−0.0097 (7)
C140.0474 (8)0.0411 (7)0.0480 (10)−0.0076 (6)−0.0040 (7)0.0001 (6)
C150.0686 (11)0.0489 (8)0.0749 (13)−0.0011 (8)−0.0002 (10)−0.0181 (8)
C160.0724 (11)0.0416 (8)0.0874 (15)0.0047 (7)−0.0082 (10)−0.0091 (9)
C170.0586 (10)0.0384 (7)0.0795 (14)−0.0011 (7)−0.0101 (9)0.0018 (8)
N10.0667 (8)0.0393 (6)0.0403 (8)0.0007 (5)−0.0026 (6)−0.0012 (5)
N20.0562 (8)0.0674 (9)0.0659 (10)−0.0034 (7)0.0055 (8)−0.0179 (8)
O10.0862 (8)0.0476 (6)0.0472 (7)0.0064 (5)−0.0074 (6)0.0060 (5)
O20.0904 (9)0.0482 (6)0.0820 (10)0.0054 (6)−0.0181 (8)0.0106 (6)
O30.0671 (7)0.0391 (5)0.0560 (7)0.0035 (5)−0.0068 (5)0.0008 (5)

Geometric parameters (Å, °)

C1—C61.381 (2)C9—C101.436 (2)
C1—C21.396 (2)C10—O11.3040 (17)
C1—N11.4327 (18)C10—C111.417 (2)
C2—N21.386 (2)C11—C121.351 (2)
C2—C31.398 (2)C11—H110.9300
C3—C41.373 (2)C12—C131.403 (2)
C3—H30.9300C12—H120.9300
C4—C51.374 (3)C13—C141.386 (2)
C4—H40.9300C13—C151.424 (2)
C5—C61.381 (2)C14—O31.3695 (17)
C5—H50.9300C15—C161.334 (2)
C6—H60.9300C15—H150.9300
C7—N11.3004 (17)C16—C171.429 (3)
C7—C91.464 (2)C16—H160.9300
C7—C81.490 (2)C17—O21.213 (2)
C8—H8A0.9600C17—O31.3893 (17)
C8—H8B0.9600N1—H10.952 (15)
C8—H8C0.9600N2—H2A0.92 (2)
C9—C141.4153 (19)N2—H2B0.91 (2)
C6—C1—C2121.01 (14)O1—C10—C9121.51 (13)
C6—C1—N1119.04 (14)C11—C10—C9119.89 (13)
C2—C1—N1119.65 (13)C12—C11—C10120.84 (16)
N2—C2—C1122.62 (14)C12—C11—H11119.6
N2—C2—C3120.05 (15)C10—C11—H11119.6
C1—C2—C3117.31 (14)C11—C12—C13121.61 (15)
C4—C3—C2121.38 (16)C11—C12—H12119.2
C4—C3—H3119.3C13—C12—H12119.2
C2—C3—H3119.3C14—C13—C12118.17 (13)
C3—C4—C5120.51 (15)C14—C13—C15118.01 (16)
C3—C4—H4119.7C12—C13—C15123.82 (16)
C5—C4—H4119.7O3—C14—C13119.53 (13)
C4—C5—C6119.43 (16)O3—C14—C9117.17 (13)
C4—C5—H5120.3C13—C14—C9123.30 (14)
C6—C5—H5120.3C16—C15—C13121.81 (16)
C5—C6—C1120.36 (16)C16—C15—H15119.1
C5—C6—H6119.8C13—C15—H15119.1
C1—C6—H6119.8C15—C16—C17120.82 (15)
N1—C7—C9115.89 (13)C15—C16—H16119.6
N1—C7—C8119.11 (13)C17—C16—H16119.6
C9—C7—C8124.99 (12)O2—C17—O3115.12 (15)
C7—C8—H8A109.5O2—C17—C16128.58 (15)
C7—C8—H8B109.5O3—C17—C16116.29 (16)
H8A—C8—H8B109.5C7—N1—C1126.31 (13)
C7—C8—H8C109.5C7—N1—H1108.9 (11)
H8A—C8—H8C109.5C1—N1—H1124.8 (11)
H8B—C8—H8C109.5C2—N2—H2A118.0 (11)
C14—C9—C10116.18 (13)C2—N2—H2B111.5 (13)
C14—C9—C7123.89 (13)H2A—N2—H2B109.3 (17)
C10—C9—C7119.92 (12)C14—O3—C17123.35 (13)
O1—C10—C11118.60 (14)
C6—C1—C2—N2179.24 (15)C11—C12—C13—C15−179.15 (16)
N1—C1—C2—N2−7.1 (2)C12—C13—C14—O3−178.55 (13)
C6—C1—C2—C31.0 (2)C15—C13—C14—O31.0 (2)
N1—C1—C2—C3174.61 (13)C12—C13—C14—C90.8 (2)
N2—C2—C3—C4−178.25 (16)C15—C13—C14—C9−179.68 (14)
C1—C2—C3—C40.0 (2)C10—C9—C14—O3177.82 (12)
C2—C3—C4—C5−0.5 (3)C7—C9—C14—O3−1.3 (2)
C3—C4—C5—C60.0 (3)C10—C9—C14—C13−1.5 (2)
C4—C5—C6—C11.0 (3)C7—C9—C14—C13179.41 (14)
C2—C1—C6—C5−1.5 (2)C14—C13—C15—C16−1.7 (2)
N1—C1—C6—C5−175.19 (14)C12—C13—C15—C16177.81 (17)
N1—C7—C9—C14174.71 (14)C13—C15—C16—C17−1.0 (3)
C8—C7—C9—C14−6.3 (2)C15—C16—C17—O2−175.59 (18)
N1—C7—C9—C10−4.4 (2)C15—C16—C17—O34.2 (3)
C8—C7—C9—C10174.68 (14)C9—C7—N1—C1−177.28 (14)
C14—C9—C10—O1−178.93 (14)C8—C7—N1—C13.6 (2)
C7—C9—C10—O10.2 (2)C6—C1—N1—C7−112.84 (17)
C14—C9—C10—C111.2 (2)C2—C1—N1—C773.42 (19)
C7—C9—C10—C11−179.71 (14)C13—C14—O3—C172.5 (2)
O1—C10—C11—C12179.96 (15)C9—C14—O3—C17−176.83 (13)
C9—C10—C11—C12−0.1 (2)O2—C17—O3—C14174.78 (14)
C10—C11—C12—C13−0.7 (3)C16—C17—O3—C14−5.1 (2)
C11—C12—C13—C140.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.95 (2)1.56 (2)2.4534 (17)155 (2)
N2—H2A···O1i0.92 (2)2.13 (2)2.9933 (19)154.7 (15)
N2—H2B···O2ii0.91 (2)2.37 (2)3.1203 (19)138.7 (17)
C5—H5···O2iii0.932.483.242 (2)139

Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) −x+3/2, y+1/2, z; (iii) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2282).

References

  • Aazam, E. S., Fawazy, A. & Hitchcock, P. B. (2006). Acta Cryst. E62, o4285–o4287.
  • Aazam, E. S., El Husseiny, A. F., Hitchcock, P. B. & Al Shehary, J. (2008). Centr. Eur. J. Chem.6, 319–323.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • El Husseiny, A. F., Aazam, E. S. & Al Shehary, J. (2008). ICAIJ, 3, 64–68.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Filarowski, A. (2005). J. Phys. Org. Chem.18, 686–698.
  • Karabıyık, H., Ocak Iskeleli, N., Petek, H., Albayrak, Ç. & Agar, E. (2008). J. Mol. Struct.873, 130–136.
  • Patil, S. A., Naik, V. H., Kulkarni, A. D. & Badami, P. S. (2010). Spectrochimica Acta Part A, 75, 347-354. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography