Search tips
Search criteria 


Logo of chimedBioMed CentralBiomed Central Web Sitesearchsubmit a manuscriptregisterthis articleChinese MedicineJournal Front Page
Chin Med. 2010; 5: 37.
Published online 2010 October 27. doi:  10.1186/1749-8546-5-37
PMCID: PMC2990743

Anti-cancer and potential chemopreventive actions of ginseng by activating Nrf2 (NFE2L2) anti-oxidative stress/anti-inflammatory pathways


This article reviews recent basic and clinical studies of ginseng, particularly the anti-cancer effects and the potential chemopreventive actions by activating the transcriptional factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2 or NFE2L2)-mediated anti-oxidative stress or anti-inflammatory pathways. Nrf2 is a novel target for cancer prevention as it regulates the antioxidant responsive element (ARE), a critical regulatory element in the promoter region of genes encoding cellular phase II detoxifying and anti-oxidative stress enzymes. The studies on the chemopreventive effects of ginseng or its components/products showed that Nrf2 could also be a target for ginseng's actions. A number of papers also demonstrated the anti-inflammatory effects of ginseng. Targeting Nrf2 pathway is a novel approach to the investigation of ginseng's cancer chemopreventive actions, including some oxidative stress and inflammatory conditions responsible for the initiation, promotion and progression of carcinogenesis.


Ginseng protects the cardiovascular system, stimulates the central nervous system [1] and possesses anti-cancer activities [2,3] inhibiting human gastric adenocarcinoma [4] and human breast carcinoma [5]. Therefore, ginseng is a potential cancer preventive agent [6].

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2 or NFE2L2) is a key regulator of the antioxidant responsive element (ARE)-mediated gene expression and therefore a potential anti-cancer target for chemopreventive compounds [7], including ginseng [8-10]. However, concerns have been raised for possible inappropriate claims of ginseng products [11,12]. This article reviews the potential chemopreventive actions of ginseng via the Nrf2 signalling pathway and the potential molecular mechanism of ginseng's anti-cancer effects.

Literature search

A full literature search (up to 2010) was conducted during November 2009 till April 2010 with 'ginseng' as the search keyword was performed in PubMed and the Chinese National Knowledge Infrastructure (CNKI). Other keywords used in the search included 'ginseng', 'Nrf2', 'chemoprevention', 'cancer prevention', 'clinical studies' and 'anti-cancer'. A total of 3917 and 147 papers from PubMed and CNKI respectively were retrieved and screened for anti-cancer clinical studies with ginseng. Seven published articles were found in PubMed with the keywords 'ginseng' and 'Nrf2' including a paper on Angelica sinensis (Danggui) [13].

Ginseng in Chinese medicine

In Chinese medicine, a disorder is often a manifestation of an imbalance between yin and yang and/or changes in the pathogenic and antipathogenic qi. Ginseng is the drug of choice for replenishing qi, especially in the case of qi collapse. Major Chinese medicinal uses of ginseng and its commercial products and their indications are provided in Table Table11.

Table 1
Use of ginseng in Chinese medicine

Clinical studies on ginseng as adjuvant therapy for cancer

Ginseng possesses preventive and therapeutics effects on cancer [14,15]. Ginseng is used to treat cancer or to reinforce the effects and/or reduce the side effects of chemotherapy [16,17]. Ginseng polysaccharides and ginsenosides are the main ingredients contributing to anti-cancer action of ginseng [18-21]. Ginseng boosts the patient's immunity, suppresses the proliferation of tumour cells, inhibits the formation of new blood vessels in tumours, induces apoptosis of tumour cells, anti-metastasis of tumour and immunomodulation [3,6]. Additional file 1 lists recent clinical studies of ginseng products as adjuvant therapy to chemotherapy and radiotherapy in China [22-27].

Significance of the Nrf2-ARE signalling pathway in cancer chemoprevention

Carcinogenesis involves multiple steps including transition of normal cells to pre-initiated cells and ultimately invasive carcinoma, providing ample opportunities for chemoprevention. In general, tumour development follows three distinct yet closely interrelated phases (I-III), namely initiation, promotion and progression [28,29]. When cells are exposed to oxidative stress, DNA may go through oxidative damage [30] coupled with persisting inflammation [31] as well as formation of DNA adducts, leading to increased genomic instability, enhanced neoplastic transformation and ultimately cancer (Figure (Figure1).1). Various cancer chemopreventive compounds, including natural dietary and synthetic compounds, are found to be effective in preventing cancer formation at all of these three developmental stages [32-34] (Figure (Figure1).1). Curcumin is one of such natural dietary chemopreventive compounds with promising findings from clinical trials [35,36]. When the cell is exposed to oxidative stress such as reactive oxygen species (ROS), reactive nitrogen species (RNS) or carcinogenic species, induction of phase I, phase II and phase III enzymes/transporters occur [37,38]. Carcinogens are typically metabolized via oxidation and reduction by phase I enzymes [39]. The resulting products are conjugated with endogenous cofactors such as glutathione (GSH) by glutathione S-transferase (GST), a phase II enzyme forming water soluble products that can be easily excreted [39,40]. Induction of other phase II enzymes such as uridine-diphospho-glucuronosyltransferases (UGT) may also enhance the excretion of carcinogens such as heterocyclic aromatic amines, the well-known genotoxic chemicals formed during preparation of foods [41,42].

Figure 1
Carcinogenesis is a multiple steps process. The initiation step is started by the transformation of the normal cell into a cancer cell (initiated cell). These cells undergo tumour promotion into preneoplastic cells, which progress to neoplastic cells. ...

The induction of phase II enzymes can be attributed to the transcriptional control of the ARE by Nrf2 [7]. Nrf2 is a key regulator of ARE-mediated gene expression and a potential target for chemopreventive compounds [43-45]. Nrf2 is inhibited in the cytoplasm by the anchor protein Kelch-like ECH-associated protein-1 (Keap1), a cytosolic protein that inhibits Nrf2 signalling by promoting Nrf2 degradation through proteasomal pathway [46]. In the presence of oxidative stress or chemical inducers, Nrf2 is released from Keap1 inhibition, translocates to the nucleus and binds to ARE consensus sequences [47]. Activation of Nrf2 by chemopreventive agents influences the expression of phase II and anti-oxidative stress enzymes such as heme oxygenase 1 (HO-1) [48]. HO-1 catalyzes the degradation of heme to carbon monoxide, iron and biliverdin and is thought to be essential in cellular defensive mechanisms and is implicated in various pathophysiological conditions such as inflammation, atherosclerosis, neurodegenerative diseases and cancers [49]. Since the first isolation of Nrf2 in 1995, the function of Nrf2 has been studied widely [50]. It appears that the most important role of Nrf2 is activating the ARE-mediated anti-oxidative responses [47]. The current understanding of the molecular Nrf2-ARE pathway is illustrated in Figure Figure22 as a schematic presentation of the proposed mechanism by which ARE and its downstream target enzymes are induced upon transcriptional activation [7,47,51,52]. Under normal physiological conditions, ROS and other endogenous reactive molecules are also constantly being produced during normal aerobic metabolism, based on numerous experimental evidence, such constitutive gene expression is also thought to be under the regulation of ARE by Nrf2 [47]. Interestingly, many chemopreventive compounds, including ginseng, are inducers of ARE. Additional file 2 lists the studies of ginseng and its extract [53-56] in activating the Nrf2-ARE pathway.

Figure 2
Schematic presentation of Nrf2-ARE pathway. In the cytoplasm, under basal level, newly synthesized Nrf2 is constitutively bound to Keap1 forming a dimer, Nrf2-Keap1. Keap1 is a cytosolic protein that inhibits Nrf2 signalling by promoting Nrf2 degradation ...

Anti-oxidative and anti-inflammatory effects of ginseng

Kim et al. reported that ginseng extract induced the elevation of catalase and superoxide dismutase activities in sedentary male patients [57]. Another study reported significant reduction of oxidative stress biomarkers such as F2-isoprostane and 8-hydroxy-deoxyguanosine in healthy patients after oral administration of ginsenoside-enriched Panax quinquefolius (American ginseng) extract [58]. As the study did not measure specific enzymes, it is not clear whether the reduction of these markers was due to the induction of antioxidant enzymes. As an in vivo study found that ginsenosides induced cytochrome (CYP) P450 1A1 which plays an important role in xenobiotic metabolism as well as in carcinogenesis [59], the drug interactions between ginseng and conventional drugs including chemotherapeutic agents should be recognized. It was postulated that ginsenoside competed with aryl hydrocarbons for both the aryl hydrocarbon receptor and CYP1A1, which may explain ginseng's chemopreventive properties [59]. Another study reported that a water extract of ginseng inhibited benzo[a]pyrene (BaP)-induced hepatotoxicity and CYP1A1 expression and reversed the reduction of GSH content and GST activities induced by BaP in rats [8]. Moreover, various isoforms of phase II gene GSTs were significantly induced by the ginseng extract via activating the Nrf2-ARE pathway. Therefore, the latter in vivo study [8] showed great promise for future studies of ginseng and chemoprevention in chemical-induced animal carcinogenesis models.

The role of Nrf2 is not only implicated in the induction of the antioxidant and phase II genes, but is also involved in anti-inflammation. One of the key transcriptional factors in inflammatory response is the nuclear factor-kappa-B (NF-kB) and many chemopreventive compounds have been reported that those compounds work through activating the Nrf2 pathway also suppressing inflammatory activities [44,60-64]. Glutathione peroxidase 2 (Gpx2) prevented the exacerbation of inflammation induced by cyclooxygenase-2 (COX-2) expression and inflammation driven initiation of carcinogenesis [65]. Various ginsenosides inhibited inducible nitric oxide synthase (iNOS)-induced NO production [66] and down-regulated COX-2 expression [67]. Interestingly, ginseng induced the expression of γ-glutamylcystein ligase (γ-GCL) and enhanced production of GSH in ginsenoside Rd treated hepatocytes [68]. One would expect that Nrf2 would be induced by ginsenoside Rd as well, however, it was reported that ginsenoside Rd increased the nuclear level of p65, which is the subunit of NF-kB complex, but not the level of Nrf2 [68]. Such observation is rather uncommon, as other reports have shown that ginsenosides are suppressing NF-kB which will be presented below. Therefore, effects of ginsenoside Rd on NF-kB pathway warrants additional detailed experiment for verification. One of the metabolite of ginsenoside, 20(S)-protopanaxatriol inhibited iNOS and COX-2 expressions through inactivation of NF-kB [69]. Evidence supports the notion that blocking NF-kB is an important target for the control of inflammation and cancer [70,71]. The interplays between Nrf2 and NF-kB signalling pathways were studied in our laboratory with a bioinformatics approach [72] and with an Nrf2-/- mouse model [61,73]. We found potential common members involved in the crosstalk between Nrf2 and NF-kB signalling pathways, such as some of the upstream mitogen-activated protein kinases (MAPKs). Increasing evidence supports the existing crosstalk between Nrf2 pathway and anti-inflammation [61,73-77]. It is likely that some of the components in ginseng targeting the Nrf2 pathway and enhancing the expression of ARE-mediated antioxidant and phase II genes would suppress the aberrant inflammatory responses regulated by the NF-kB pathway concomitantly (Figure (Figure33).

Figure 3
A simplified illustration showing the role of Nrf2 in anti-oxidative and anti-inflammatory pathways preventing carcinogenesis. Upon stimulation by ROS, RNS (having negative effects in subjects) and chemopreventive compounds (having positive effects in ...

Future studies

In future studies, it would be important to correlate the oxidative stress markers and the development of oxidative stress induced-diseases such as cancer in chemopreventive studies using ginseng/ginseng products. Properly designed long-term clinical studies should be performed to investigate the chemopreventive activities of ginseng, particularly the Nrf2-related antioxidant and phase II detoxifying enzymes as many cancer patients worldwide, have been using ginseng for boosting the immunity or general well-being during chemotherapy, radiotherapy or post-surgery.


The anti-cancer and chemopreventive actions of ginseng could be exerted through activating the Nrf2 anti-oxidative and anti-inflammatory pathways. Further studies on the effects of ginseng in Nrf2-mediated induction of phase II/antioxidant enzymes would elucidate the action mechanism of ginseng in cancer chemoprevention.


Nrf2 (NFE2L2): Nuclear factor (erythroid-derived 2)-like 2; ARE: Antioxidant responsive element; CNKI: Chinese National Knowledge Infrastructure; ROS: Reactive oxygen species; RNS: Reactive nitrogen species; GSH: Glutathione; GST: Glutathione S-transferase; UGT: Uridine-diphospho-glucuronosyltransferases; Keap1: Kelch-like ECH-associated protein-1; HO-1: Heme oxygenase 1; CYP: Cytochrome; BaP: Benzo[a]pyrene; NF-kB: Nuclear factor-kappa-B; Gpx2: Glutathione peroxidase 2; COX-2: Cyclooxygenase-2; iNOS: Inducible nitric oxide synthase; γ-GCL: γ-glutamylcystein ligase; MAPKs: Mitogen-activated protein kinases; bZip: Basic leucine zipper partners; GSP: Ginseng polysaccharides; KPS: Karnofsky Performance Status Scale; NPC: Nasopharyngeal carcinoma; RT: Radiotherapy; NK: Natural killer; LAK: Lymphocyte activated killer; NQO1: NADPH: quinone oxidoreductase 1; AKR: Aldo-keto reductases.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

CLLS planned this review. CLLS and QW performed the literature searches and drafted the manuscript. ANTK supervised the review process and revised the manuscript. All authors read and approved the final version of the manuscript.

Supplementary Material

Additional file 1:

Clinical studies of ginseng Chinese medicine products as adjuvant therapy to cancer treatments.

Additional file 2:

Preclinical studies on ginseng and its extracts showing molecular activities on Nrf2 activation for potential chemopreventive use.


This work was funded by the Institutional Funds to ANTK. Our appreciation is extended to QW's laboratory for the assistance in obtaining some of the primary literatures. QW received a scholarship from the China Scholarship Council and Beijing University of Chinese Medicine (China).


  • Gillis CN. Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol. 1997;54(1):1–8. doi: 10.1016/S0006-2952(97)00193-7. [PubMed] [Cross Ref]
  • Yue PY, Mak NK, Cheng YK, Leung KW, Ng TB, Fan DT, Yeung HW, Wong RN. Pharmacogenomics and the Yin/Yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides. Chin Med. 2007;2:6. doi: 10.1186/1749-8546-2-6. [PMC free article] [PubMed] [Cross Ref]
  • Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev. 2004;9(3):259–274. [PubMed]
  • Saita T, Katano M, Matsunaga H, Kouno I, Fujito H, Mori M. Screening of polyacetylenic alcohols in crude drugs using the ELISA for panaxytriol. Biol Pharm Bull. 1995;18(7):933–937. [PubMed]
  • Matsunaga H, Saita T, Nagumo F, Mori M, Katano M. A possible mechanism for the cytotoxicity of a polyacetylenic alcohol, panaxytriol: inhibition of mitochondrial respiration. Cancer Chemother Pharmacol. 1995;35(4):291–296. doi: 10.1007/BF00689447. [PubMed] [Cross Ref]
  • Yun TK. Panax ginseng--a non-organ-specific cancer preventive? Lancet Oncol. 2001;2(1):49–55. doi: 10.1016/S1470-2045(00)00196-0. [PubMed] [Cross Ref]
  • Li W, Kong AN. Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog. 2009;48(2):91–104. doi: 10.1002/mc.20465. [PMC free article] [PubMed] [Cross Ref]
  • Gum SI, Jo SJ, Ahn SH, Kim SG, Kim JT, Shin HM, Cho MK. The potent protective effect of wild ginseng (Panax ginseng C.A. Meyer) against benzo[alpha]pyrene-induced toxicity through metabolic regulation of CYP1A1 and GSTs. J Ethnopharmacol. 2007;112(3):568–576. doi: 10.1016/j.jep.2007.05.014. [PubMed] [Cross Ref]
  • Ng F, Yun H, Lei X, Danishefsky SJ, Fahey J, Stephenson K, Flexner C, Lee L. (3R, 9R, 10R)-Panaxytriol: A molecular-based nutraceutical with possible application to cancer prevention and treatment. Tetrahedron Lett. 2008;49(50):7178–7179. doi: 10.1016/j.tetlet.2008.09.169. [PMC free article] [PubMed] [Cross Ref]
  • Hwang YP, Jeong HG. Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells. Toxicol Appl Pharmacol. 2010;242(1):18–28. doi: 10.1016/j.taap.2009.09.009. [PubMed] [Cross Ref]
  • Morris CA, Avorn J. Internet marketing of herbal products. Jama. 2003;290(11):1505–1509. doi: 10.1001/jama.290.11.1505. [PubMed] [Cross Ref]
  • DeAngelis CD, Fontanarosa PB. Drugs alias dietary supplements. Jama. 2003;290(11):1519–1520. doi: 10.1001/jama.290.11.1519. [PubMed] [Cross Ref]
  • Dietz BM, Liu D, Hagos GK, Yao P, Schinkovitz A, Pro SM, Deng S, Farnsworth NR, Pauli GF, van Breemen RB, Bolton JL. Angelica sinensis and its alkylphthalides induce the detoxification enzyme NAD(P)H: quinone oxidoreductase 1 by alkylating Keap1. Chem Res Toxicol. 2008;21(10):1939–1948. doi: 10.1021/tx8001274. [PMC free article] [PubMed] [Cross Ref]
  • Yun TK. Experimental and epidemiological evidence on non-organ specific cancer preventive effect of Korean ginseng and identification of active compounds. Mutat Res. 2003;523-524:63–74. [PubMed]
  • Shibata S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Korean Med Sci. 2001;16(Suppl):S28–37. [PMC free article] [PubMed]
  • Chang YS, Seo EK, Gyllenhaal C, Block KI. Panax ginseng: a role in cancer therapy? Integr Cancer Ther. 2003;2(1):13–33. doi: 10.1177/1534735403251167. [PubMed] [Cross Ref]
  • Jia L, Zhao Y, Liang XJ. Current evaluation of the millennium phytomedicine- ginseng (II): Collected chemical entities, modern pharmacology, and clinical applications emanated from traditional Chinese medicine. Curr Med Chem. 2009;16(22):2924–2942. doi: 10.2174/092986709788803204. [PMC free article] [PubMed] [Cross Ref]
  • Xiang YZ, Shang HC, Gao XM, Zhang BL. A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother Res. 2008;22(7):851–858. doi: 10.1002/ptr.2384. [PubMed] [Cross Ref]
  • Qi LW, Wang CZ, Yuan CS. American ginseng: potential structure-function relationship in cancer chemoprevention. Biochem Pharmacol. 2010;80(7):947–954. doi: 10.1016/j.bcp.2010.06.023. [PubMed] [Cross Ref]
  • Ni W, Zhang X, Wang B, Chen Y, Han H, Fan Y, Zhou Y, Tai G. Antitumor activities and immunomodulatory effects of ginseng neutral polysaccharides in combination with 5-fluorouracil. J Med Food. 2010;13(2):270–277. doi: 10.1089/jmf.2009.1119. [PubMed] [Cross Ref]
  • Cheng H, Li S, Fan Y, Gao X, Hao M, Wang J, Zhang X, Tai G, Zhou Y. Comparative studies of the antiproliferative effects of ginseng polysaccharides on HT-29 human colon cancer cells. Med Oncol. 2010. in press . [PubMed]
  • Zeng Y. Adjunctive therapy of Ginseng Polysaccharide for lung cancer. China Pharmaceuticals. 2001;10(6):31–32.
  • Fu W, Chen L, Huang S, Zou H. The role of Panax ginseng polysaccharide injection in chemotherapy of patients with ovarian cancer. Pharm Care & Res. 2005;5(2):169–171.
  • Xie F, Zeng Z, Huang H, Zhao C, Lu T. Clinical observation on nasopharyngeal carcinoma treated with combined therapy of radiotherapy and ginseng polysaccharide injection. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2001;21(5):332–334. [PubMed]
  • Liu J, Sun L, Zhao Y, Zhou T, Zhang J, Sui G, Wu J, Zhou J, Fu L, Lu Q, Liu G, Hui M. Clinical phase II study on immunoimprovement of patients with breast cancer treated by Shenyi capsule. Chin J Clin Oncol. 2000;27(7):534–536.
  • Liu S, Sun L, Ban L, Zhou T. Ginsenoside Rg3 capsules combined NP regimen in the treatment of advanced non-small cell lung cancer. Chin Clin Oncol. 2007;12(11):847–849.
  • Wang H, Li X. The application of shengmai injection in malignant tumor. Mod Chin Med. 2003. pp. 16–17.
  • Berenblum I, Armuth V. Two independent aspects of tumor promotion. Biochim Biophys Acta. 1981;651(1):51–63. [PubMed]
  • Heidelberger C, Freeman AE, Pienta RJ, Sivak A, Bertram JS, Casto BC, Dunkel VC, Francis MW, Kakunaga T, Little JB, Schechtman LM. Cell transformation by chemical agents--a review and analysis of the literature. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res. 1983;114(3):283–385. [PubMed]
  • Weinberg F, Chandel NS. Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci. 2009;66(23):3663–3673. doi: 10.1007/s00018-009-0099-y. [PubMed] [Cross Ref]
  • Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–444. doi: 10.1038/nature07205. [PubMed] [Cross Ref]
  • Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol. 2006;71(10):1397–1421. doi: 10.1016/j.bcp.2006.02.009. [PubMed] [Cross Ref]
  • Juge N, Mithen RF, Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci. 2007;64(9):1105–1127. doi: 10.1007/s00018-007-6484-5. [PubMed] [Cross Ref]
  • Wattenberg LW. Chemoprevention of cancer. Cancer Res. 1985;45(1):1–8. [PubMed]
  • Hsu CH, Cheng AL. Clinical studies with curcumin. Adv Exp Med Biol. 2007;595:471–480. full_text. [PubMed]
  • Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65(11):1631–1652. doi: 10.1007/s00018-008-7452-4. [PubMed] [Cross Ref]
  • Xu C, Li CY, Kong AN. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res. 2005;28(3):249–268. doi: 10.1007/BF02977789. [PubMed] [Cross Ref]
  • Valgimigli L, Iori R. Antioxidant and pro-oxidant capacities of ITCs. Environ Mol Mutagen. 2009;50(3):222–237. doi: 10.1002/em.20468. [PubMed] [Cross Ref]
  • Yu S, Kong AN. Targeting carcinogen metabolism by dietary cancer preventive compounds. Curr Cancer Drug Targets. 2007;7(5):416–424. doi: 10.2174/156800907781386669. [PubMed] [Cross Ref]
  • Shen G, Kong AN. Nrf2 plays an important role in coordinated regulation of Phase II drug metabolism enzymes and Phase III drug transporters. Biopharm Drug Dispos. 2009;30(7):345–355. doi: 10.1002/bdd.680. [PMC free article] [PubMed] [Cross Ref]
  • Yuan JH, Li YQ, Yang XY. Inhibition of epigallocatechin gallate on orthotopic colon cancer by upregulating the Nrf2-UGT1A signal pathway in nude mice. Pharmacology. 2007;80(4):269–278. doi: 10.1159/000106447. [PubMed] [Cross Ref]
  • Yuan JH, Li YQ, Yang XY. Protective effects of epigallocatechin gallate on colon preneoplastic lesions induced by 2-amino-3-methylimidazo[4,5-f ] quinoline in mice. Mol Med. 2008;14(9-10):590–598. doi: 10.2119/2007-00050.Yuan. [PMC free article] [PubMed] [Cross Ref]
  • Kwak MK, Kensler TW. Targeting NRF2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol. 2010;244(1):66–76. doi: 10.1016/j.taap.2009.08.028. [PMC free article] [PubMed] [Cross Ref]
  • Khor TO, Yu S, Kong AN. Dietary cancer chemopreventive agents - targeting inflammation and Nrf2 signaling pathway. Planta Med. 2008;74(13):1540–1547. doi: 10.1055/s-0028-1088303. [PubMed] [Cross Ref]
  • Nair S, Li W, Kong AN. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells. Acta Pharmacol Sin. 2007;28(4):459–472. doi: 10.1111/j.1745-7254.2007.00549.x. [PubMed] [Cross Ref]
  • Katoh Y, Iida K, Kang MI, Kobayashi A, Mizukami M, Tong KI, McMahon M, Hayes JD, Itoh K, Yamamoto M. Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome. Arch Biochem Biophys. 2005;433(2):342–350. doi: 10.1016/ [PubMed] [Cross Ref]
  • Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284(20):13291–13295. doi: 10.1074/jbc.R900010200. [PubMed] [Cross Ref]
  • Yuan X, Xu C, Pan Z, Keum YS, Kim JH, Shen G, Yu S, Oo KT, Ma J, Kong AN. Butylated hydroxyanisole regulates ARE-mediated gene expression via Nrf2 coupled with ERK and JNK signaling pathway in HepG2 cells. Mol Carcinog. 2006;45(11):841–850. doi: 10.1002/mc.20234. [PubMed] [Cross Ref]
  • Abraham NG, Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev. 2008;60(1):79–127. doi: 10.1124/pr.107.07104. [PubMed] [Cross Ref]
  • Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA. 1994;91(21):9926–9930. doi: 10.1073/pnas.91.21.9926. [PubMed] [Cross Ref]
  • Kwak MK, Wakabayashi N, Kensler TW. Chemoprevention through the Keap1-Nrf2 signaling pathway by phase 2 enzyme inducers. Mutat Res. 2004;555(1-2):133–148. [PubMed]
  • Jeong WS, Jun M, Kong AN. Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxid Redox Signal. 2006;8(1-2):99–106. doi: 10.1089/ars.2006.8.99. [PubMed] [Cross Ref]
  • Lee LS, Stephenson KK, Fahey JW, Parsons TL, Lietman PS, Andrade AS, Lei X, Yun H, Soon GH, Shen P, Danlshefsky S, Flexner C. Induction of chemoprotective phase 2 enzymes by ginseng and its components. Planta Med. 2009;75(10):1129–1133. doi: 10.1055/s-0029-1185508. [PubMed] [Cross Ref]
  • Halim M, Yee DJ, Sames D. Imaging induction of cytoprotective enzymes in intact human cells: coumberone, a metabolic reporter for human AKR1C enzymes reveals activation by panaxytriol, an active component of red ginseng. J Am Chem Soc. 2008;130(43):14123–14128. doi: 10.1021/ja801245y. [PubMed] [Cross Ref]
  • Park SH, Jang JH, Chen CY, Na HK, Surh YJ. A formulated red ginseng extract rescues PC12 cells from PCB-induced oxidative cell death through Nrf2-mediated upregulation of heme oxygenase-1 and glutamate cysteine ligase. Toxicology. 2010;278(1):131–139. [PubMed]
  • Li J, Ichikawa T, Jin Y, Hofseth LJ, Nagarkatti P, Nagarkatti M, Windust A, Cui T. An essential role of Nrf2 in American ginseng-mediated anti-oxidative actions in cardiomyocytes. J Ethnopharmacol. 2010;130(2):222–230. doi: 10.1016/j.jep.2010.03.040. [PubMed] [Cross Ref]
  • Kim SH, Park KS, Chang MJ, Sung JH. Effects of Panax ginseng extract on exercise-induced oxidative stress. J Sports Med Phys Fitness. 2005;45(2):178–182. [PubMed]
  • Lee LS, Wise SD, Chan C, Parsons TL, Flexner C, Lietman PS. Possible differential induction of phase 2 enzyme and antioxidant pathways by american ginseng, Panax quinquefolius. J Clin Pharmacol. 2008;48(5):599–609. doi: 10.1177/0091270008314252. [PubMed] [Cross Ref]
  • Wang Y, Ye X, Ma Z, Liang Q, Lu B, Tan H, Xiao C, Zhang B, Gao Y. Induction of cytochrome P450 1A1 expression by ginsenoside Rg1 and Rb1 in HepG2 cells. Eur J Pharmacol. 2008;601(1-3):73–78. doi: 10.1016/j.ejphar.2008.10.057. [PubMed] [Cross Ref]
  • Kim J, Cha YN, Surh YJ. A protective role of nuclear erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res. 2010;690(1-2):12–23. [PubMed]
  • Lin W, Wu RT, Wu T, Khor TO, Wang H, Kong AN. Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem Pharmacol. 2008;76(8):967–973. doi: 10.1016/j.bcp.2008.07.036. [PMC free article] [PubMed] [Cross Ref]
  • Liu H, Dinkova-Kostova AT, Talalay P. Coordinate regulation of enzyme markers for inflammation and for protection against oxidants and electrophiles. Proc Natl Acad Sci USA. 2008;105(41):15926–15931. doi: 10.1073/pnas.0808346105. [PubMed] [Cross Ref]
  • Dinkova-Kostova AT, Liby KT, Stephenson KK, Holtzclaw WD, Gao X, Suh N, Williams C, Risingsong R, Honda T, Gribble GW, Sporn MB, Talalay P. Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. Proc Natl Acad Sci USA. 2005;102(12):4584–4589. doi: 10.1073/pnas.0500815102. [PubMed] [Cross Ref]
  • Ahn YH, Hwang Y, Liu H, Wang XJ, Zhang Y, Stephenson KK, Boronina TN, Cole RN, Dinkova-Kostova AT, Talalay P, Cole PA. Electrophilic tuning of the chemoprotective natural product sulforaphane. Proc Natl Acad Sci USA. 2010;107(21):9590–9595. doi: 10.1073/pnas.1004104107. [PubMed] [Cross Ref]
  • Banning A, Florian S, Deubel S, Thalmann S, Muller-Schmehl K, Jacobasch G, Brigelius-Flohe R. GPx2 counteracts PGE2 production by dampening COX-2 and mPGES-1 expression in human colon cancer cells. Antioxid Redox Signal. 2008;10(9):1491–1500. doi: 10.1089/ars.2008.2047. [PubMed] [Cross Ref]
  • Park YC, Lee CH, Kang HS, Kim KW, Chung HT, Kim HD. Ginsenoside-Rh1 and Rh2 inhibit the induction of nitric oxide synthesis in murine peritoneal macrophages. Biochem Mol Biol Int. 1996;40(4):751–757. [PubMed]
  • Surh YJ, Na HK, Lee JY, Keum YS. Molecular mechanisms underlying anti-tumor promoting activities of heat-processed Panax ginseng C.A. Meyer. J Korean Med Sci. 2001;16(Suppl):S38–41. [PMC free article] [PubMed]
  • Kim ND, Pokharel YR, Kang KW. Ginsenoside Rd enhances glutathione levels in H4IIE cells via NF-kappaB-dependent gamma-glutamylcysteine ligase induction. Pharmazie. 2007;62(12):933–936. [PubMed]
  • Oh GS, Pae HO, Choi BM, Seo EA, Kim DH, Shin MK, Kim JD, Kim JB, Chung HT. 20(S)-Protopanaxatriol, one of ginsenoside metabolites, inhibits inducible nitric oxide synthase and cyclooxygenase-2 expressions through inactivation of nuclear factor-kappaB in RAW 264.7 macrophages stimulated with lipopolysaccharide. Cancer Lett. 2004;205(1):23–29. doi: 10.1016/j.canlet.2003.09.037. [PubMed] [Cross Ref]
  • Darnell JE. Transcription factors as targets for cancer therapy. Nat Rev Cancer. 2002;2(10):740–749. doi: 10.1038/nrc906. [PubMed] [Cross Ref]
  • Richmond A. Nf-kappa B, chemokine gene transcription and tumour growth. Nat Rev Immunol. 2002;2(9):664–674. doi: 10.1038/nri887. [PMC free article] [PubMed] [Cross Ref]
  • Nair S, Doh ST, Chan JY, Kong AN, Cai L. Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis. Br J Cancer. 2008;99(12):2070–2082. doi: 10.1038/sj.bjc.6604703. [PMC free article] [PubMed] [Cross Ref]
  • Wang H, Khor TO, Saw CL, Lin W, Wu T, Huang Y, Kong AN. Role of Nrf2 in suppressing LPS-induced inflammation in mouse peritoneal macrophages by polyunsaturated fatty acids docosahexaenoic acid and eicosapentaenoic acid. Mol Pharm. 2010. in press . [PubMed]
  • Kuang X, Scofield VL, Yan M, Stoica G, Liu N, Wong PK. Attenuation of oxidative stress, inflammation and apoptosis by minocycline prevents retrovirus-induced neurodegeneration in mice. Brain Res. 2009;1286:174–184. doi: 10.1016/j.brainres.2009.06.007. [PMC free article] [PubMed] [Cross Ref]
  • Cho HY, Gladwell W, Wang X, Chorley B, Bell D, Reddy SP, Kleeberger SR. Nrf2-regulated PPAR{gamma} expression is critical to protection against acute lung injury in mice. Am J Respir Crit Care Med. 2010;182(2):170–182. doi: 10.1164/rccm.200907-1047OC. [PMC free article] [PubMed] [Cross Ref]
  • Saw CL, Huang Y, Kong AN. Synergistic anti-inflammatory effects of low doses of curcumin in combination with polyunsaturated fatty acids: docosahexaenoic acid or eicosapentaenoic acid. Biochem Pharmacol. 2010;79(3):421–430. doi: 10.1016/j.bcp.2009.08.030. [PubMed] [Cross Ref]
  • Cheung KL, Khor TO, Kong AN. Synergistic effect of combination of phenethyl isothiocyanate and sulforaphane or curcumin and sulforaphane in the inhibition of inflammation. Pharm Res. 2009;26(1):224–231. doi: 10.1007/s11095-008-9734-9. [PubMed] [Cross Ref]

Articles from Chinese Medicine are provided here courtesy of BioMed Central