PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m385–m386.
Published online 2010 March 6. doi:  10.1107/S1600536810008068
PMCID: PMC2984089

catena-Poly[[aqua­cadmium(II)]-bis­(μ2-4-chloro­benzoato)]

Abstract

In the title complex, [Cd(C7H4ClO2)2(H2O)]n, the Cd atom lies on a twofold axis and adopts a square-pyramidal coordination geometry. The water mol­ecule occupies the axial site with O atoms from four different 4-chloro­benzoato ligands in the equatorial plane. Pairs of 4-chloro­benzoato ligands bridge adjacent CdII ions, generating an infinite chain structure along the c axis. Parallel polymeric chains are further inter­connected through water–acetate O—H(...)O hydrogen bonds, forming layers in the bc plane.

Related literature

For the use of organic acids in constructing metal-organic frameworks, see: Zhao et al. (2003 [triangle]); Cao et al. (2002 [triangle]); Zhang et al. (2004 [triangle]). The related six-coordinate CdII complex with two coordinated water mol­ecules has a distorted octa­hedral geometry, see: Rodesiler et al. (1985 [triangle]). For other related structures involving the 4-chloro­benzoato anion, see: Turpeinen et al. (1999 [triangle]); Xue et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m385-scheme1.jpg

Experimental

Crystal data

  • [Cd(C7H4ClO2)2(H2O)]
  • M r = 441.52
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m385-efi1.jpg
  • a = 32.525 (2) Å
  • b = 6.4769 (5) Å
  • c = 7.1419 (6) Å
  • β = 98.883 (3)°
  • V = 1486.48 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.85 mm−1
  • T = 296 K
  • 0.4 × 0.3 × 0.2 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.567, T max = 0.746
  • 9459 measured reflections
  • 1334 independent reflections
  • 1308 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.016
  • wR(F 2) = 0.042
  • S = 1.12
  • 1334 reflections
  • 101 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810008068/sj2730sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008068/sj2730Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the Science and Technology program, Beijing Municipal Education Commission.

supplementary crystallographic information

Comment

Organic acids are widely used as versatile building blocks in many metal- organic frameworks with diverse structural motifs (Zhao et al., 2003; Cao et al., 2002; Zhang et al., 2004). In metal complexes the 4-chlorobenzoato anion can function both to balance charge and as a bridging ligand. Several structures incorporating this ligand have been investigated (Turpeinen, et al., 1999; Xue et al., 2006).

Herein we report a new compound [Cd(C7H4ClO2)2.H2O] derived from 4-chlorobenzoic acid, which exhibits an one-dimensional infinite chain structure. In the title complex the CdII atom lies on a two-fold axis and adopts a square pyramidal coordination geometry (Fig. 1). The water molecule occupies the axial site with oxygen atoms from four different 4-chlorobenzoato ligands in the equatorial plane. The Cd—O1W bond length is 2.233 (2)Å and the Cd—O(acetate) distances lie in the range 2.221 (1)-2.390 (1) Å, Table 1. Pairs of 4-chlorobenzoato ligands bridge two adjacent CdII ions generating an infinite chain structure along the c axis. Parallel polymeric chains are further interconnected through O1W—H1WA···O2 hydrogen bonds forming layers in the bc plane (Fig. 2, Table 2), with an O1W···O2 (D···A) distance of 2.699 (2) Å. This structure is entirely different from that of [Cd(C7H4ClO2)2.(H2O)2], in which the CdII ion adopts a distorted six-coordination geometry (Rodesiler et al., 1985).

Experimental

4-chlorobenzoic acid (0.040 g, 0.3 mmol) was dissolved in a mixture of methanol, 2 ml, and acetonitrile, 2 ml. Sodium hydroxide was subsequently added at room temperature to adjust the pH to 7. Then, Cd(ClO4)2.6H2O (0.371 g, 0.1 mmol) was added and the solution stirred for an hour. The clear solution was filtered and then left to stand in air. After 6 days colorless rod-like crystals were deposited (260 mg, 72% yield).

Refinement

The hydrogen atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C— H = 0.93 Å and Uĩso~(H) = 1.2Ueq(C). The position of the hydrogen atom of the coordinated water molecule was obtained from a difference Fourier map, with the O—H distances restrained to 0.89 Å.

Figures

Fig. 1.
The structure of (I) showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as rods of arbitrary radius. [Symmetry Codes: (i) –x, y, –z + 1/2; (ii) –x, –y, ...
Fig. 2.
Hydrogen-bonding interactions (dashed lines) between parallel chains along the c axis of complex (I).

Crystal data

[Cd(C7H4ClO2)2(H2O)]F(000) = 864
Mr = 441.52Dx = 1.973 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 543 reflections
a = 32.525 (2) Åθ = 2.3–26.7°
b = 6.4769 (5) ŵ = 1.85 mm1
c = 7.1419 (6) ÅT = 296 K
β = 98.883 (3)°Rod, colorless
V = 1486.48 (19) Å30.4 × 0.3 × 0.2 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer1334 independent reflections
Radiation source: fine-focus sealed tube1308 reflections with I > 2σ(I)
graphiteRint = 0.021
ω scansθmax = 25.1°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −38→38
Tmin = 0.567, Tmax = 0.746k = −7→7
9459 measured reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042H-atom parameters constrained
S = 1.12w = 1/[σ2(Fo2) + (0.0231P)2 + 1.3036P] P = (Fo2 + 2Fc2)/3
1334 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.0000−0.15461 (2)0.25000.02841 (8)
Cl10.222718 (19)0.55886 (13)0.63416 (9)0.0652 (2)
O10.06477 (4)−0.0960 (2)0.3902 (2)0.0444 (3)
O20.02952 (4)0.1741 (2)0.4642 (2)0.0361 (3)
C10.06390 (6)0.0837 (3)0.4530 (2)0.0306 (4)
C20.10373 (6)0.1976 (3)0.5081 (2)0.0298 (4)
C30.10333 (6)0.4005 (3)0.5697 (3)0.0355 (4)
H3A0.07820.46300.58360.043*
C40.14008 (6)0.5103 (3)0.6107 (3)0.0405 (5)
H4A0.13980.64680.65100.049*
C50.17716 (6)0.4147 (4)0.5911 (3)0.0407 (5)
C60.17853 (6)0.2115 (4)0.5343 (3)0.0421 (5)
H6A0.20380.14850.52490.050*
C70.14156 (6)0.1033 (3)0.4914 (3)0.0363 (4)
H7A0.1420−0.03320.45130.044*
O1W0.0000−0.4993 (3)0.25000.0527 (6)
H1WA0.0106−0.57560.34940.079*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.02668 (12)0.02429 (12)0.03493 (12)0.0000.00687 (8)0.000
Cl10.0426 (3)0.0929 (5)0.0609 (4)−0.0347 (3)0.0102 (3)−0.0183 (3)
O10.0365 (8)0.0428 (8)0.0546 (9)−0.0097 (6)0.0093 (6)−0.0179 (7)
O20.0272 (7)0.0388 (7)0.0420 (8)−0.0023 (5)0.0047 (6)0.0094 (5)
C10.0300 (9)0.0369 (10)0.0252 (8)−0.0059 (8)0.0047 (7)0.0034 (7)
C20.0282 (9)0.0356 (9)0.0260 (8)−0.0046 (7)0.0047 (7)0.0006 (7)
C30.0316 (10)0.0396 (10)0.0360 (9)−0.0026 (8)0.0075 (8)−0.0046 (8)
C40.0434 (11)0.0411 (11)0.0377 (10)−0.0117 (9)0.0081 (8)−0.0080 (8)
C50.0323 (10)0.0579 (13)0.0315 (9)−0.0160 (9)0.0036 (8)−0.0014 (9)
C60.0273 (10)0.0556 (12)0.0434 (11)0.0006 (9)0.0055 (8)0.0032 (10)
C70.0328 (10)0.0374 (10)0.0390 (10)0.0000 (8)0.0069 (8)0.0016 (8)
O1W0.0701 (15)0.0225 (10)0.0564 (13)0.000−0.0190 (11)0.000

Geometric parameters (Å, °)

Cd1—O1i2.2210 (14)C2—C71.395 (3)
Cd1—O12.2210 (14)C3—C41.383 (3)
Cd1—O1W2.233 (2)C3—H3A0.9300
Cd1—O2ii2.3896 (14)C4—C51.382 (3)
Cd1—O2iii2.3896 (14)C4—H4A0.9300
Cl1—C51.738 (2)C5—C61.380 (3)
O1—C11.249 (2)C6—C71.385 (3)
O2—C11.276 (2)C6—H6A0.9300
O2—Cd1iii2.3896 (14)C7—H7A0.9300
C1—C21.490 (3)O1W—H1WA0.8900
C2—C31.386 (3)
O1i—Cd1—O1160.33 (8)C7—C2—C1120.18 (18)
O1i—Cd1—O1W99.84 (4)C4—C3—C2120.30 (18)
O1—Cd1—O1W99.84 (4)C4—C3—H3A119.9
O1i—Cd1—O2ii95.88 (5)C2—C3—H3A119.9
O1—Cd1—O2ii85.16 (5)C5—C4—C3119.15 (19)
O1W—Cd1—O2ii86.97 (3)C5—C4—H4A120.4
O1i—Cd1—O2iii85.16 (5)C3—C4—H4A120.4
O1—Cd1—O2iii95.88 (5)C6—C5—C4121.72 (18)
O1W—Cd1—O2iii86.97 (3)C6—C5—Cl1119.92 (16)
O2ii—Cd1—O2iii173.94 (6)C4—C5—Cl1118.34 (17)
C1—O1—Cd1104.39 (12)C5—C6—C7118.77 (19)
C1—O2—Cd1iii120.07 (11)C5—C6—H6A120.6
O1—C1—O2121.26 (17)C7—C6—H6A120.6
O1—C1—C2119.30 (17)C6—C7—C2120.4 (2)
O2—C1—C2119.39 (17)C6—C7—H7A119.8
C3—C2—C7119.59 (18)C2—C7—H7A119.8
C3—C2—C1120.18 (17)Cd1—O1W—H1WA123.7
O1i—Cd1—O1—C121.30 (11)O2—C1—C2—C7−178.09 (17)
O1W—Cd1—O1—C1−158.70 (11)C7—C2—C3—C41.4 (3)
O2ii—Cd1—O1—C1115.23 (12)C1—C2—C3—C4−176.33 (18)
O2iii—Cd1—O1—C1−70.77 (12)C2—C3—C4—C5−0.6 (3)
Cd1—O1—C1—O214.4 (2)C3—C4—C5—C6−0.9 (3)
Cd1—O1—C1—C2−162.92 (13)C3—C4—C5—Cl1177.43 (16)
Cd1iii—O2—C1—O192.47 (18)C4—C5—C6—C71.6 (3)
Cd1iii—O2—C1—C2−90.19 (17)Cl1—C5—C6—C7−176.69 (16)
O1—C1—C2—C3176.98 (18)C5—C6—C7—C2−0.8 (3)
O2—C1—C2—C3−0.4 (3)C3—C2—C7—C6−0.6 (3)
O1—C1—C2—C7−0.7 (3)C1—C2—C7—C6177.07 (18)

Symmetry codes: (i) −x, y, −z+1/2; (ii) x, −y, z−1/2; (iii) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2iv0.891.882.699 (2)153

Symmetry codes: (iv) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2730).

References

  • Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cao, R., Shi, Q., Sun, D.-F., Hong, M.-C., Bi, W. H. & Zhao, Y.-J. (2002). Inorg. Chem 41, 6161–6168. [PubMed]
  • Rodesiler, P. F., Griffith, E. A. H., Charles, N. G. & Amma, E. L. (1985). Acta Cryst. C41, 673–678.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Turpeinen, U., Hämälänen, R. & Mutikainen, I. (1999). Acta Cryst. C55, 50–52.
  • Xue, L., Che, Y.-X. & Zheng, J.-M. (2006). Acta Cryst. E62, m2750–m2752.
  • Zhang, J.-J., Sheng, T.-L., Xia, S.-Q., Leibeling, G., Meyer, F., Hu, S.-M., Fu, R.-B., Xiang, S.-C. & Wu, X.-T. (2004). Inorg. Chem 43, 5472–5478. [PubMed]
  • Zhao, B., Cheng, B., Dai, Y., Cheng, C., Liao, D., Yan, S., Jiang, Z. & Wang, G. (2003). Angew. Chem. Int. Ed 42, 934–936. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography