PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o922.
Published online 2010 March 27. doi:  10.1107/S1600536810010603
PMCID: PMC2984088

N′-(4-Bromo­benzyl­idene)thio­phene-2-carbohydrazide

Abstract

In the title compound, C12H9BrN2OS, the dihedral angle between the aromatic rings is 10.0 (2)°. In the crystal structure, inversion dimers linked by pairs of N—H(...)O hydrogen bonds occur, generating R 2 2(8) loops. Weak aromatic π–π stacking [centroid–centroid separations = 3.825 (3) and 3.866 (3) Å] also occurs.

Related literature

For background to Schiff bases, see: Cimerman et al. (1997 [triangle]). For a related structure, see: Girgis (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o922-scheme1.jpg

Experimental

Crystal data

  • C12H9BrN2OS
  • M r = 309.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o922-efi1.jpg
  • a = 6.0700 (12) Å
  • b = 16.983 (3) Å
  • c = 11.643 (2) Å
  • β = 94.85 (3)°
  • V = 1195.9 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.60 mm−1
  • T = 293 K
  • 0.23 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer
  • 8238 measured reflections
  • 2079 independent reflections
  • 1614 reflections with I > 2σ(I)
  • R int = 0.086

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.163
  • S = 1.03
  • 2079 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.75 e Å−3
  • Δρmin = −0.84 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010603/hb5368sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010603/hb5368Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff bases have received considerable attention in the literature. They are attractive from several points of view, such as the possibility of analytical application (Cimerman et al., 1997). As part of our search for new Schiff base compounds we synthesized the title compound (I), and describe its structure here.

The molcular structure of (I) is shown in Fig. 1. The C6—N2 bond length of 1.273 (3)Å is comparable with C—N double bond [1.281 (2) Å] reported (Girgis, 2006). In the crystal structure, molecules are linked by intermolecular N—H···O hydrogen bonds.

Experimental

A mixture of thiophene-2-carbohydrazide (0.05 mol), and 4-bromobenzaldehyde (0.05 mol) was stirred in refluxing ethanol (10 mL) for 4 h to afford the title compound (0.080 mol, yield 80%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93-0.97 Å; N—H = 0.86Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of (I) showing 30% probability displacement ellipsoids.

Crystal data

C12H9BrN2OSF(000) = 616
Mr = 309.18Dx = 1.717 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1614 reflections
a = 6.0700 (12) Åθ = 3.5–25.3°
b = 16.983 (3) ŵ = 3.60 mm1
c = 11.643 (2) ÅT = 293 K
β = 94.85 (3)°Block, colorless
V = 1195.9 (4) Å30.23 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer1614 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.086
graphiteθmax = 25.3°, θmin = 3.5°
ω scansh = −6→7
8238 measured reflectionsk = −19→19
2079 independent reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
2079 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = −0.84 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.15443 (9)0.87907 (3)0.25958 (4)0.0509 (3)
S1−0.8655 (2)0.61910 (7)0.37457 (11)0.0437 (4)
C6−0.5332 (9)0.6311 (2)0.0959 (4)0.0382 (11)
H6A−0.52110.60610.02560.046*
N2−0.6908 (7)0.61169 (19)0.1589 (3)0.0390 (9)
C10−0.0606 (8)0.8041 (3)0.2068 (4)0.0396 (11)
N1−0.8383 (6)0.5559 (2)0.1135 (3)0.0390 (9)
H1A−0.81930.53530.04750.047*
O1−1.1473 (6)0.4869 (2)0.1217 (3)0.0526 (9)
C5−1.0117 (8)0.5329 (2)0.1702 (4)0.0401 (11)
C1−1.0383 (9)0.6136 (3)0.4824 (5)0.0466 (13)
H1B−1.00990.63830.55340.056*
C3−1.2229 (8)0.5388 (3)0.3431 (4)0.0431 (11)
H3A−1.33660.50750.30990.052*
C11−0.2387 (9)0.7887 (3)0.2738 (4)0.0456 (12)
H11A−0.25290.81630.34180.055*
C7−0.3756 (7)0.6916 (2)0.1350 (4)0.0363 (10)
C12−0.3902 (8)0.7326 (3)0.2374 (4)0.0449 (12)
H12A−0.50610.72170.28220.054*
C4−1.0404 (8)0.5594 (2)0.2876 (4)0.0381 (10)
C9−0.0451 (8)0.7655 (2)0.1054 (4)0.0430 (11)
H9A0.07050.77670.06040.052*
C8−0.2019 (9)0.7093 (3)0.0693 (4)0.0445 (12)
H8A−0.19030.6832−0.00010.053*
C2−1.2204 (8)0.5698 (2)0.4544 (4)0.0433 (11)
H2B−1.33120.56120.50340.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0496 (5)0.0514 (4)0.0511 (5)−0.01021 (19)0.0003 (3)0.00256 (19)
S10.0465 (8)0.0495 (8)0.0352 (8)−0.0095 (5)0.0039 (6)−0.0090 (5)
C60.049 (3)0.036 (2)0.029 (3)0.002 (2)0.002 (2)0.0009 (17)
N20.046 (3)0.0360 (19)0.034 (2)−0.0016 (16)−0.0017 (18)−0.0028 (15)
C100.042 (3)0.038 (2)0.039 (3)0.0005 (19)0.002 (2)0.0079 (18)
N10.041 (2)0.040 (2)0.036 (2)−0.0064 (17)0.0026 (17)−0.0082 (15)
O10.060 (3)0.055 (2)0.042 (2)−0.0194 (17)0.0048 (17)−0.0114 (15)
C50.047 (3)0.034 (2)0.039 (3)−0.006 (2)−0.001 (2)−0.0020 (18)
C10.050 (3)0.055 (3)0.035 (3)0.003 (2)0.007 (2)−0.009 (2)
C30.044 (3)0.046 (3)0.039 (3)−0.010 (2)0.006 (2)−0.005 (2)
C110.051 (3)0.049 (3)0.037 (3)−0.008 (2)0.009 (2)−0.008 (2)
C70.036 (3)0.038 (2)0.035 (3)0.0043 (19)0.0031 (19)0.0085 (18)
C120.037 (3)0.051 (3)0.048 (3)−0.007 (2)0.012 (2)−0.004 (2)
C40.048 (3)0.033 (2)0.033 (3)0.0037 (19)−0.002 (2)−0.0031 (16)
C90.042 (3)0.040 (2)0.048 (3)0.002 (2)0.012 (2)0.005 (2)
C80.058 (3)0.041 (2)0.036 (3)0.000 (2)0.010 (2)−0.0029 (19)
C20.040 (3)0.049 (3)0.043 (3)−0.001 (2)0.013 (2)−0.004 (2)

Geometric parameters (Å, °)

Br1—C101.889 (5)C1—H1B0.9300
S1—C11.705 (5)C3—C41.374 (7)
S1—C41.732 (5)C3—C21.397 (6)
C6—N21.296 (6)C3—H3A0.9300
C6—C71.450 (7)C11—C121.366 (7)
C6—H6A0.9300C11—H11A0.9300
N2—N11.378 (5)C7—C81.387 (6)
C10—C91.360 (6)C7—C121.391 (6)
C10—C111.410 (7)C12—H12A0.9300
N1—C51.347 (6)C9—C81.387 (7)
N1—H1A0.8600C9—H9A0.9300
O1—C51.236 (5)C8—H8A0.9300
C5—C41.464 (6)C2—H2B0.9300
C1—C21.349 (7)
C1—S1—C490.8 (2)C12—C11—H11A120.5
N2—C6—C7120.1 (4)C10—C11—H11A120.5
N2—C6—H6A120.0C8—C7—C12118.0 (4)
C7—C6—H6A120.0C8—C7—C6119.6 (4)
C6—N2—N1116.4 (4)C12—C7—C6122.4 (4)
C9—C10—C11120.2 (5)C11—C12—C7121.8 (4)
C9—C10—Br1120.7 (4)C11—C12—H12A119.1
C11—C10—Br1119.1 (4)C7—C12—H12A119.1
C5—N1—N2121.4 (4)C3—C4—C5121.7 (4)
C5—N1—H1A119.3C3—C4—S1110.6 (3)
N2—N1—H1A119.3C5—C4—S1127.7 (4)
O1—C5—N1118.5 (4)C10—C9—C8119.9 (4)
O1—C5—C4119.6 (4)C10—C9—H9A120.1
N1—C5—C4121.9 (4)C8—C9—H9A120.1
C2—C1—S1113.3 (4)C7—C8—C9121.1 (4)
C2—C1—H1B123.4C7—C8—H8A119.4
S1—C1—H1B123.4C9—C8—H8A119.4
C4—C3—C2113.2 (4)C1—C2—C3112.1 (4)
C4—C3—H3A123.4C1—C2—H2B124.0
C2—C3—H3A123.4C3—C2—H2B124.0
C12—C11—C10119.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.002.828 (5)161

Symmetry codes: (i) −x−2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5368).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.
  • Girgis, A. S. (2006). J. Chem. Res. pp. 81–85.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography