PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m459–m460.
Published online 2010 March 27. doi:  10.1107/S1600536810010536
PMCID: PMC2984086

catena-Poly[[(2-methyl­benzoato-κ2 O,O′)sodium]-di-μ-aqua-κ4 O:O′]

Abstract

In the title coordination polymer, [Na(C8H7O2)(H2O)2]n, the cation is chelated by the carboxyl­ate O atoms of the anion in a bidentate mode and is surrounded by the O atoms of four water mol­ecules. The coordination of the Na+ cation is distorted octa­hedral. The water mol­ecules bridge adjacent metal cations, forming polymeric layers parallel to (100). The structure is stabilized by an extensive network of O—H(...)O hydrogen bonds.

Related literature

Tin complexes with organic ligands have been studied intensively due to their biological activity, see, for example: Shahzadi et al. (2007 [triangle]). For 2-methyl­benzoic and 4-methyl­benzoic acids as potent allergic sensitizers when applied to human skin, see: Emmet & Suskind (1973 [triangle]), and as inhibitors of lettuce fruit germination, see: Reynolds (1978 [triangle]). Sodium 2-methyl­benzoate has been studied as a precursor in the synthesis of biologically active tin(IV) complexes. For the structure of a sodium complex with a 2-methyl-3,5-dinitro­benzoate ligand, see: Danish et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m459-scheme1.jpg

Experimental

Crystal data

  • [Na(C8H7O2)(H2O)2]
  • M r = 194.16
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m459-efi1.jpg
  • a = 16.145 (3) Å
  • b = 8.1155 (16) Å
  • c = 7.3986 (15) Å
  • β = 92.98 (3)°
  • V = 968.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.14 mm−1
  • T = 293 K
  • 0.55 × 0.41 × 0.11 mm

Data collection

  • Kuma KM-4 four-circle diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.952, T max = 0.991
  • 3057 measured reflections
  • 2845 independent reflections
  • 1919 reflections with I > 2σ(I)
  • R int = 0.024
  • 3 standard reflections every 200 reflections intensity decay: 0.8%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.141
  • S = 1.02
  • 2845 reflections
  • 151 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: KM-4 Software (Kuma, 1996 [triangle]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810010536/wm2315sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010536/wm2315Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MD acknowledges the Australian Government for the award of an Endeavour Post Doctoral Fellowship for the year 2009–2010.

supplementary crystallographic information

Comment

2-methylbenzoic and 4-methylbenzoic acids were studied as potent allergic sensitizers when applied to human skin (Emmet & Suskind, 1973). They are also used for the inhibition of lettuce fruit germination (Reynolds, 1978). The title compound was isolated as an intermediate during synthesis of biologically active organotin carboxylates (Shahzadi et al., 2007).

In the polymeric structure of the title compound, [Na(C8H7O2)(H2O)2]n, each sodium ion is coordinated by the carboxylic O atoms of the bidentate anion and by four bridging water O atoms (Fig.1). The coordination geometry around the Na+ cation is distorted octahedral with the equatorial plane composed of the carboxylate atoms O1 and O2 and the symmetry-related water O4 and O4i atoms [r.m.s. is 0.0580 (2) Å]. Water O3 and O3ii atoms are at the apical positions. The resulting coordination differs from the one reported in the structure of the Na+ complex with the 2-methyl-3,5-dinitrobenzoate anion. Here the metal exhibits coordination number 7 (Danish et al., 2010). The 2-methylbenzoate ring in the title compound is planar with a r.m.s. of 0.0089 (2) Å; the carboxylic group C17/O1/O2 makes an dihedral angle of 37.1 (2)° with the aromatic ring. Na+ cations form sheets parallel to the (100) plane in which they are grouped into pairs (Fig. 2). In such a pair, Na+ cations are coordinated by ligands with their 2-methylbenzoate rings pointing in the same direction but twisted by an angle of 73.0 (2)° relative to each other. Water O atoms bridge in two directions: via O4 atoms along the b axis and via O3 atoms along the c axis. Water molecules act as donors and carboxylate O atoms as acceptors in a network of O—H··· O hydrogen bonds that consolidate the crystal structure. Geometrical parameters of the hydrogen bonding are listed in Table 2.

Experimental

50 ml of an aqueous solution containing 0.0147 mmol of 2-methylbenzoic acid were added dropwise with continuous stirring at room trmperature to 50 ml of an aqueous solution of sodium bicarbonate (0.0147 mmol). The mixture was then refluxed for 3 hours, cooled to room temperature and concentrated under reduced pressure to afford a dry solid mass which was then purified by re-crystallization from a distilled water-ethanol (4:1) mixture to obtain single crystals.

Refinement

Water H atoms were localized from Fourier maps and refined isotropically without constraints. H atoms attached to toluene-ring C atoms were positioned geometrically and refined with a riding model.

Figures

Fig. 1.
A structural unit of (1) with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: (I) x,-y+3/2,z-1;2; (II) -x,y-1/2,-z+1/2.
Fig. 2.
Packing diagram of the structure.

Crystal data

[Na(C8H7O2)(H2O)2]F(000) = 408
Mr = 194.16Dx = 1.332 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 16.145 (3) Åθ = 6–15°
b = 8.1155 (16) ŵ = 0.14 mm1
c = 7.3986 (15) ÅT = 293 K
β = 92.98 (3)°Block, colourless
V = 968.1 (3) Å30.55 × 0.41 × 0.11 mm
Z = 4

Data collection

Kuma KM-4 four-circle diffractometer1919 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
graphiteθmax = 30.1°, θmin = 1.3°
profile data from ω/2θ scansh = −22→22
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008)k = 0→11
Tmin = 0.952, Tmax = 0.991l = −10→0
3057 measured reflections3 standard reflections every 200 reflections
2845 independent reflections intensity decay: 0.8%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0889P)2 + 0.1369P] where P = (Fo2 + 2Fc2)/3
2845 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Na10.01791 (3)0.64831 (7)0.25611 (7)0.03320 (17)
O20.14852 (7)0.53347 (14)0.41532 (13)0.0386 (2)
C70.18004 (8)0.53264 (15)0.26404 (16)0.0273 (2)
C10.27247 (8)0.53757 (16)0.25234 (17)0.0305 (3)
C20.32656 (10)0.4527 (2)0.3718 (2)0.0425 (3)
C60.30354 (11)0.6271 (3)0.1107 (2)0.0492 (4)
C30.41092 (11)0.4583 (3)0.3414 (3)0.0562 (5)
C80.29779 (16)0.3518 (4)0.5275 (4)0.0852 (9)
H8A0.27740.42390.61810.128*
H8B0.34340.28840.57880.128*
H8C0.25420.27890.48480.128*
C50.38805 (13)0.6352 (3)0.0885 (4)0.0694 (6)
C40.44096 (12)0.5494 (3)0.2038 (4)0.0672 (6)
O10.13648 (6)0.53062 (13)0.11780 (13)0.0367 (2)
O30.08470 (7)0.91596 (13)0.25956 (15)0.0365 (2)
O4−0.05771 (7)0.74541 (15)0.49901 (14)0.0357 (2)
H320.1128 (15)0.918 (3)0.179 (4)0.055 (6)*
H310.1175 (16)0.921 (3)0.357 (4)0.069 (7)*
H41−0.0863 (15)0.676 (3)0.526 (3)0.057 (7)*
H42−0.0901 (14)0.819 (3)0.458 (3)0.056 (6)*
H50.2640 (13)0.693 (3)0.026 (3)0.056 (6)*
H20.4464 (15)0.395 (3)0.412 (3)0.060 (6)*
H40.4058 (17)0.705 (4)−0.018 (4)0.092 (9)*
H30.495 (2)0.556 (4)0.179 (4)0.096 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Na10.0366 (3)0.0334 (3)0.0296 (3)0.0032 (2)0.0015 (2)0.0004 (2)
O20.0421 (5)0.0471 (6)0.0270 (4)−0.0009 (4)0.0063 (4)0.0023 (4)
C70.0323 (6)0.0244 (5)0.0251 (5)−0.0006 (4)0.0012 (4)0.0000 (4)
C10.0319 (6)0.0309 (6)0.0286 (6)−0.0002 (5)0.0002 (5)−0.0024 (5)
C20.0395 (7)0.0431 (8)0.0439 (8)0.0023 (6)−0.0073 (6)0.0027 (6)
C60.0441 (8)0.0588 (10)0.0452 (9)−0.0034 (7)0.0089 (7)0.0115 (7)
C30.0379 (8)0.0628 (12)0.0664 (12)0.0075 (7)−0.0114 (8)−0.0096 (9)
C80.0650 (13)0.106 (2)0.0834 (16)0.0098 (13)−0.0112 (12)0.0597 (15)
C50.0497 (11)0.0876 (16)0.0730 (14)−0.0130 (10)0.0234 (10)0.0141 (12)
C40.0341 (8)0.0854 (16)0.0830 (15)−0.0045 (9)0.0118 (9)−0.0171 (12)
O10.0374 (5)0.0440 (6)0.0279 (5)0.0005 (4)−0.0045 (4)−0.0024 (4)
O30.0474 (6)0.0369 (5)0.0253 (5)−0.0008 (4)0.0018 (4)0.0001 (4)
O40.0415 (5)0.0336 (5)0.0320 (5)−0.0002 (5)0.0009 (4)−0.0016 (4)

Geometric parameters (Å, °)

Na1—O42.3599 (13)C2—C81.506 (3)
Na1—O4i2.3689 (13)C6—C51.384 (3)
Na1—O12.4141 (13)C6—H51.02 (2)
Na1—O32.4245 (13)C3—C41.367 (4)
Na1—O3ii2.5086 (13)C3—H20.91 (3)
Na1—O22.5387 (14)C8—H8A0.9600
Na1—C72.7787 (14)C8—H8B0.9600
Na1—Na1i4.0508 (8)C8—H8C0.9600
Na1—Na1iii4.0508 (8)C5—C41.366 (4)
Na1—Na1ii4.0990 (8)C5—H41.02 (3)
Na1—Na1iv4.0991 (8)C4—H30.90 (3)
O2—C71.2534 (16)O3—Na1iv2.5087 (13)
C7—O11.2596 (16)O3—H320.77 (3)
C7—C11.4999 (18)O3—H310.88 (3)
C1—C61.390 (2)O4—Na1iii2.3689 (13)
C1—C21.392 (2)O4—H410.76 (3)
C2—C31.393 (3)O4—H420.84 (3)
O4—Na1—O4i102.97 (4)O2—Na1—Na1iv119.11 (3)
O4—Na1—O1155.22 (5)C7—Na1—Na1iv117.81 (3)
O4i—Na1—O1100.99 (4)Na1i—Na1—Na1iv65.37 (2)
O4—Na1—O386.57 (5)Na1iii—Na1—Na1iv67.05 (2)
O4i—Na1—O383.84 (5)Na1ii—Na1—Na1iv163.72 (3)
O1—Na1—O389.82 (4)C7—O2—Na187.34 (8)
O4—Na1—O3ii85.39 (5)O2—C7—O1122.18 (12)
O4i—Na1—O3ii85.70 (5)O2—C7—C1120.18 (11)
O1—Na1—O3ii102.67 (4)O1—C7—C1117.62 (12)
O3—Na1—O3ii165.05 (4)O2—C7—Na165.88 (8)
O4—Na1—O2102.67 (5)O1—C7—Na160.19 (7)
O4i—Na1—O2152.54 (4)C1—C7—Na1158.26 (9)
O1—Na1—O252.67 (4)C6—C1—C2119.88 (15)
O3—Na1—O288.04 (4)C6—C1—C7117.16 (13)
O3ii—Na1—O2106.03 (4)C2—C1—C7122.92 (13)
O4—Na1—C7128.38 (5)C1—C2—C3117.90 (16)
O4i—Na1—C7125.85 (5)C1—C2—C8123.11 (16)
O1—Na1—C726.92 (4)C3—C2—C8118.97 (17)
O3—Na1—C783.36 (4)C5—C6—C1120.70 (18)
O3ii—Na1—C7111.48 (4)C5—C6—H5119.4 (12)
O2—Na1—C726.78 (3)C1—C6—H5119.8 (12)
O4—Na1—Na1i125.73 (4)C4—C3—C2121.71 (18)
O4i—Na1—Na1i30.99 (3)C4—C3—H2119.7 (15)
O1—Na1—Na1i74.72 (3)C2—C3—H2118.5 (15)
O3—Na1—Na1i67.88 (3)C2—C8—H8A109.5
O3ii—Na1—Na1i107.18 (3)C2—C8—H8B109.5
O2—Na1—Na1i122.27 (3)H8A—C8—H8B109.5
C7—Na1—Na1i96.45 (4)C2—C8—H8C109.5
O4—Na1—Na1iii31.13 (3)H8A—C8—H8C109.5
O4i—Na1—Na1iii124.09 (4)H8B—C8—H8C109.5
O1—Na1—Na1iii125.87 (3)C4—C5—C6119.3 (2)
O3—Na1—Na1iii69.30 (4)C4—C5—H4124.9 (16)
O3ii—Na1—Na1iii108.49 (3)C6—C5—H4115.8 (16)
O2—Na1—Na1iii76.42 (3)C5—C4—C3120.39 (17)
C7—Na1—Na1iii99.38 (4)C5—C4—H3115 (2)
Na1i—Na1—Na1iii131.91 (3)C3—C4—H3125 (2)
O4—Na1—Na1ii105.63 (4)C7—O1—Na192.89 (8)
O4i—Na1—Na1ii106.05 (4)Na1—O3—Na1iv112.37 (5)
O1—Na1—Na1ii73.32 (3)Na1—O3—H32107.0 (18)
O3—Na1—Na1ii161.66 (4)Na1iv—O3—H32111.3 (18)
O3ii—Na1—Na1ii33.16 (3)Na1—O3—H31107.4 (17)
O2—Na1—Na1ii76.09 (3)Na1iv—O3—H31111.9 (17)
C7—Na1—Na1ii78.33 (3)H32—O3—H31106 (2)
Na1i—Na1—Na1ii112.95 (2)Na1—O4—Na1iii117.88 (5)
Na1iii—Na1—Na1ii114.63 (2)Na1—O4—H41107.1 (18)
O4—Na1—Na1iv66.94 (3)Na1iii—O4—H41110.8 (17)
O4i—Na1—Na1iv63.62 (3)Na1—O4—H42107.3 (15)
O1—Na1—Na1iv119.76 (4)Na1iii—O4—H42108.5 (16)
O3—Na1—Na1iv34.47 (3)H41—O4—H42104 (2)
O3ii—Na1—Na1iv130.62 (4)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x, y−1/2, −z+1/2; (iii) x, −y+3/2, z+1/2; (iv) −x, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H42···O1iv0.84 (3)1.94 (3)2.7582 (17)163 (2)
O4—H41···O2v0.76 (3)2.03 (3)2.7874 (17)171 (2)
O3—H31···O1iii0.88 (3)1.97 (3)2.7716 (16)151 (2)
O3—H32···O2i0.77 (3)2.10 (3)2.8265 (16)158 (2)

Symmetry codes: (iv) −x, y+1/2, −z+1/2; (v) −x, −y+1, −z+1; (iii) x, −y+3/2, z+1/2; (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2315).

References

  • Danish, M., Saleem, I., Ahmad, N., Raza, A. R., Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m137. [PMC free article] [PubMed]
  • Emmet, E. A. & Suskind, R. R. (1973). J. Investig. Dermitol 61, 282–285.
  • Kuma (1996). KM-4 Software Kuma Diffraction Ltd, Wrocław, Poland.
  • Kuma (2001). DATAPROC Kuma Diffraction Ltd, Wrocław, Poland.
  • Oxford Diffraction (2008). CrysAlis RED Oxford Diffraction Ltd, Yarnton, England
  • Reynolds, T. (1978). Ann. Bot.42, 419–427.
  • Shahzadi, S., Shahid, K. & Ali, S. (2007). Russ. J. Coord. Chem.33, 403–411.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography