PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o879–o880.
Published online 2010 March 20. doi:  10.1107/S1600536810009499
PMCID: PMC2984085

Absolute configuration of isoeichlerialactone

Abstract

The title seco-dammarane triterpenoid, C27H42O4 (systematic name: 3-{(3S,3aR,5aR,6S,7S,9aR,9bR)-6,9a,9b-trimethyl-3-[(R)-2-methyl-5-oxotetra­hydro­furan-2-yl]-7-(prop-1-en-2-yl)dodeca­hydro-1H-cyclo­penta­[a]naphthalen-6-yl}propanoic acid), has been isolated for the first time from the seeds of Aglaia forbesii. The mol­ecule has three fused rings and all rings are in trans-fused. The two cyclo­hexane rings are in standard chair conformations and the cyclo­pentane ring adopts an envelope conformation. Its absolute configuration was determined by the refinement of the Flack parameter to 0.26 (17). In the crystal, mol­ecules are linked into chains along [010] by O—H(...)O hydrogen bonds.

Related literature

For details of ring conformations, see: Cremer & Pople (1975 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For background to triterpenes and their biological activity, see: Engelmeier et al. (2000 [triangle]); Greger et al. (2001 [triangle]); Joycharat et al. (2008 [triangle], 2010 [triangle]); Kim et al. (2006 [triangle]); Proksch et al. (2005 [triangle]). For a related structure, see: Singh & Aalbersberg (1992 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o879-scheme1.jpg

Experimental

Crystal data

  • C27H42O4
  • M r = 430.61
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o879-efi1.jpg
  • a = 11.8690 (4) Å
  • b = 7.0388 (3) Å
  • c = 14.1173 (5) Å
  • β = 94.962 (2)°
  • V = 1174.99 (8) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 0.63 mm−1
  • T = 100 K
  • 0.56 × 0.14 × 0.06 mm

Data collection

  • Bruker APEX DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.720, T max = 0.962
  • 29402 measured reflections
  • 3253 independent reflections
  • 3209 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.076
  • S = 1.05
  • 3253 reflections
  • 286 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.19 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1258 Friedel pairs
  • Flack parameter: 0.26 (17)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810009499/rz2425sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009499/rz2425Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was financially supported by the Office of Higher Education Commission (CHE-RES-PD), Thailand. The authors thank the Prince of Songkla University for financial support and also the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

The genus Aglaia is a rich source of a number of interesting constituents, such as flavaglines, bisamides, triterpenoids, and limonoids which have insecticidal, antifungal, anti-inflammatory and cytotoxic activities (Engelmeier et al., 2000; Greger et al., 2001; Kim et al., 2006; Proksch et al., 2005). Aglaia forbesii is a large tree mainly distributed in southern Thailand. Previous phytochemical studies on the leaves of Aglaia forbesii showed that some of the isolated compounds from this plant showed antituberculosis and antiviral activities (Joycharat et al., 2008). The title seco-dammarane triterpenoid was isolated for the first time from the seeds of Aglaia forbessi which was collected from Nakhon Si Thammarat province in the southern part of Thailand. Its absolute configuration was determined by making use of the anomalous scattering of Cu KαX-radiation with the the Flack parameter refined to 0.26 (17). We report herein the crystal structure of the title compound.

Fig. 1 shows that the molecule of the title compound has three fused rings and all rings are in trans-fused. The two cyclohexane rings are in standard chair conformations. The cyclopentane (C13–C17) ring adopts an envelope conformation with the puckered C14 atom having the maximum deviation of 0.2865 (19) Å, Q = 0.45556 (19) Å and θ = 222.1 (2)° whereas the furan ring (C20–C23/O3) is twisted with the C20 and C21 atoms having deviations of -0.169 (2) and 0.185 (2) Å, respectively from the C22/C23/O3 plane, with Q = 0.297 (2) Å and θ = 61.9 (4)° (Cremer & Pople, 1975). Atoms C2, C3, O1 and O2 of the propanoic acid lie on the same plane with r.m.s. deviation of 0.0050 (2) Å. The orientation of the propanoic acid [C1–C3/O1–O2] group is described by the torsion angles C10–C1–C2–C3 = 179.42 (14)°, C1–C2–C3–O1 = -167.70 (14)° and C1–C2–C3–O2 = 14.2 (2)°. The bond angles around C4 and C25 atoms are indicative of sp2 hybridization for these atoms and the bond length of 1.374 (3) Å confirms the C4═C25 bond. All bond distances are within normal ranges (Allen et al., 1987). The configurations at atoms C5, C8, C9, C10, C13, C14, C17 and C20 are in S, R, R, S, R, R, S and R, respectively. In the title compound (isoeichlerialactone), the configuration at atom C20 (Fig. 1) or position 2 of the 2-methyl-5-oxotetrahydrofuran unit [C20–C24/O3–O4] was established as R-methyl configuration whereas in the eichlerialactone (Singh & Aalbersberg, 1992), this position is in S-configuration and the remaining positions are in the same configurations.

In the crystal packing (Fig. 2), the molecules are arranged into one dimensional chains along the b axis by intermolecular O—H···O hydrogen bonds involving O atoms of propanoic acid groups (Table 1).

Experimental

The seeds of Aglaia forbesii (48 g) were air-dried and ground, and exhaustively extracted with EtOH (3 × 500 mL) at room temperature. The combined extracts were concentrated under reduced pressure to afford a brown extract (5.7 g) which was resuspended in a mixture of MeOH and water and then extracted with n-hexane, CH2Cl2, and BuOH, successively. The CH2Cl2 fraction (1.87 g) was applied to column chromatography over silica gel (Merck, 0.063-0.200 mm) using gradient elution from 2% to 100% acetone in CH2Cl2, and finally washed down with MeOH. The fraction eluted with 12% acetone in CH2Cl2 was further purified on columns of silica gel (CH2Cl2-acetone, 92:8 v/v) and Sephadex LH20 (CH2Cl2-MeOH, 1:1 v/v) to yield the title compound (10.7 mg). Colourless needle-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from EtOH after several days. 1H NMR and 13C NMR spectral data (Joycharat et al., 2010) were consistent with the X-ray structure.

Refinement

After confirming their positions from the difference map, all H atoms were placed in calculated positions with d(O—H) = 0.82 Å and d(C—H) = 0.93 Å for aromatic, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for hydroxy and methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.67 Å from H26B and the deepest hole is located at 1.15 Å from C12. 1258 Friedel pairs were used to determine the absolute configuration.

Figures

Fig. 1.
The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of the title compound viewed along the a axis, showing a chain of molecules along the [010] direction formed by intermolecular O—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen ...

Crystal data

C27H42O4F(000) = 472
Mr = 430.61Dx = 1.217 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 3253 reflections
a = 11.8690 (4) Åθ = 3.1–63.5°
b = 7.0388 (3) ŵ = 0.63 mm1
c = 14.1173 (5) ÅT = 100 K
β = 94.962 (2)°Needle, colourless
V = 1174.99 (8) Å30.56 × 0.14 × 0.06 mm
Z = 2

Data collection

Bruker APEX DUO CCD area-detector diffractometer3253 independent reflections
Radiation source: sealed tube3209 reflections with I > 2σ(I)
graphiteRint = 0.045
[var phi] and ω scansθmax = 63.5°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −13→13
Tmin = 0.720, Tmax = 0.962k = −6→7
29402 measured reflectionsl = −16→16

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029w = 1/[σ2(Fo2) + (0.0429P)2 + 0.3283P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.20 e Å3
3253 reflectionsΔρmin = −0.19 e Å3
286 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0060 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1258 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.26 (17)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.02039 (9)0.12899 (19)0.98069 (8)0.0230 (3)
O20.87449 (10)−0.06457 (19)0.94649 (9)0.0269 (3)
H1O20.9144−0.13700.98020.040*
O30.85383 (10)0.17561 (19)0.33396 (8)0.0233 (3)
O40.92934 (11)−0.0534 (2)0.24954 (9)0.0311 (3)
C10.73873 (13)0.1943 (3)0.85206 (11)0.0165 (4)
H1A0.70300.17860.91080.020*
H1B0.73590.07210.82020.020*
C20.86329 (13)0.2436 (3)0.87797 (11)0.0182 (4)
H2A0.90050.25690.81980.022*
H2B0.86740.36560.91010.022*
C30.92647 (13)0.0998 (3)0.94034 (11)0.0181 (4)
C40.60276 (14)0.5092 (3)0.93919 (11)0.0220 (4)
C50.65278 (13)0.5261 (3)0.84351 (11)0.0180 (4)
H5A0.72960.57540.85760.022*
C60.58968 (13)0.6758 (3)0.78086 (11)0.0183 (4)
H6A0.58250.79120.81740.022*
H6B0.51420.63010.76120.022*
C70.65149 (14)0.7207 (3)0.69250 (11)0.0190 (4)
H7A0.72410.77760.71250.023*
H7B0.60780.81310.65390.023*
C80.67072 (12)0.5444 (3)0.63145 (11)0.0162 (4)
C90.72743 (13)0.3854 (3)0.69732 (11)0.0150 (4)
H9A0.80000.44010.72220.018*
C100.66594 (13)0.3357 (3)0.78849 (11)0.0163 (4)
C110.75991 (13)0.2106 (3)0.64025 (11)0.0178 (4)
H11A0.69150.15050.61200.021*
H11B0.79870.11980.68330.021*
C120.83640 (13)0.2598 (3)0.56117 (11)0.0182 (4)
H12A0.90900.30550.58900.022*
H12B0.84920.14740.52380.022*
C130.77909 (13)0.4124 (3)0.49785 (11)0.0164 (4)
H13A0.70550.36110.47330.020*
C140.75490 (12)0.5929 (3)0.55434 (11)0.0167 (4)
C150.71234 (13)0.7261 (3)0.47270 (11)0.0195 (4)
H15A0.71260.85740.49360.023*
H15B0.63650.69200.44720.023*
C160.79861 (14)0.6939 (3)0.39867 (12)0.0230 (4)
H16A0.86250.77940.41010.028*
H16B0.76380.71560.33490.028*
C170.83734 (13)0.4841 (3)0.41098 (11)0.0185 (4)
H17A0.91920.48310.42750.022*
C180.86642 (13)0.6806 (3)0.59992 (11)0.0185 (4)
H18A0.92530.66230.55830.028*
H18B0.88720.61980.65980.028*
H18C0.85580.81410.60990.028*
C190.55240 (13)0.2318 (3)0.76682 (11)0.0184 (4)
H19A0.53120.17100.82350.028*
H19B0.56000.13790.71850.028*
H19C0.49520.32180.74500.028*
C200.81270 (14)0.3722 (3)0.31846 (11)0.0198 (4)
C210.88153 (15)0.4451 (3)0.23872 (12)0.0256 (4)
H21A0.83880.53710.19910.031*
H21B0.95190.50270.26440.031*
C220.90316 (16)0.2656 (3)0.18336 (13)0.0312 (5)
H22A0.84550.24810.13110.037*
H22B0.97670.27010.15830.037*
C230.89845 (14)0.1082 (3)0.25590 (12)0.0246 (4)
C240.68744 (15)0.3543 (3)0.28607 (12)0.0306 (5)
H24A0.65030.28290.33220.046*
H24B0.67860.29020.22590.046*
H24C0.65440.47870.27970.046*
C250.67355 (16)0.5249 (3)1.02112 (12)0.0328 (5)
H25A0.64380.52501.07990.039*
H25B0.75120.53541.01780.039*
C260.48110 (15)0.4927 (3)0.94372 (13)0.0288 (5)
H26A0.46540.46261.00760.043*
H26B0.45220.39380.90160.043*
H26C0.44550.61100.92500.043*
C270.55534 (13)0.4831 (3)0.58199 (11)0.0198 (4)
H27A0.49900.48810.62680.030*
H27B0.56080.35570.55850.030*
H27C0.53450.56730.52990.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0221 (6)0.0222 (8)0.0237 (6)0.0001 (5)−0.0039 (5)−0.0002 (5)
O20.0239 (6)0.0207 (8)0.0348 (7)−0.0002 (6)−0.0052 (5)0.0082 (6)
O30.0287 (6)0.0248 (9)0.0170 (6)−0.0003 (5)0.0044 (5)−0.0021 (5)
O40.0385 (7)0.0257 (10)0.0308 (7)−0.0002 (6)0.0136 (5)−0.0034 (6)
C10.0192 (8)0.0153 (10)0.0153 (7)−0.0003 (7)0.0036 (6)−0.0009 (7)
C20.0209 (8)0.0166 (11)0.0172 (8)0.0013 (7)0.0019 (6)0.0010 (7)
C30.0206 (8)0.0183 (11)0.0159 (8)0.0003 (7)0.0044 (6)−0.0020 (7)
C40.0322 (9)0.0147 (11)0.0201 (8)0.0067 (8)0.0082 (7)0.0009 (8)
C50.0178 (7)0.0186 (11)0.0176 (8)−0.0009 (7)0.0017 (6)−0.0003 (7)
C60.0213 (8)0.0156 (11)0.0187 (8)0.0005 (7)0.0054 (6)−0.0025 (7)
C70.0215 (8)0.0166 (11)0.0190 (8)0.0019 (7)0.0028 (6)0.0036 (7)
C80.0172 (8)0.0165 (11)0.0150 (8)0.0007 (7)0.0024 (6)0.0010 (7)
C90.0151 (7)0.0138 (11)0.0159 (7)0.0004 (7)0.0004 (6)0.0006 (7)
C100.0161 (8)0.0166 (11)0.0161 (7)0.0002 (7)0.0015 (6)0.0010 (7)
C110.0217 (8)0.0154 (11)0.0167 (8)0.0007 (7)0.0030 (6)0.0007 (7)
C120.0210 (8)0.0172 (11)0.0169 (8)0.0012 (7)0.0040 (6)−0.0022 (7)
C130.0165 (8)0.0171 (11)0.0157 (7)−0.0001 (7)0.0025 (6)0.0005 (7)
C140.0164 (7)0.0183 (11)0.0156 (8)−0.0003 (7)0.0020 (6)0.0016 (7)
C150.0226 (8)0.0164 (11)0.0198 (8)0.0009 (7)0.0028 (6)0.0020 (7)
C160.0274 (9)0.0225 (12)0.0196 (8)0.0005 (8)0.0054 (7)0.0049 (8)
C170.0167 (8)0.0223 (12)0.0165 (8)−0.0003 (7)0.0026 (6)0.0011 (7)
C180.0206 (8)0.0156 (11)0.0197 (8)−0.0020 (7)0.0035 (6)0.0001 (7)
C190.0187 (8)0.0181 (11)0.0187 (8)−0.0004 (7)0.0027 (6)0.0003 (7)
C200.0225 (8)0.0200 (12)0.0168 (8)0.0019 (7)0.0018 (6)0.0010 (7)
C210.0277 (9)0.0305 (13)0.0190 (8)0.0014 (8)0.0044 (7)0.0027 (8)
C220.0354 (10)0.0360 (14)0.0237 (9)−0.0007 (9)0.0104 (7)0.0009 (9)
C230.0261 (9)0.0264 (14)0.0219 (9)−0.0034 (9)0.0057 (7)−0.0053 (8)
C240.0253 (9)0.0462 (15)0.0200 (8)−0.0015 (9)−0.0007 (7)−0.0009 (9)
C250.0342 (10)0.0465 (15)0.0182 (8)0.0131 (9)0.0052 (7)−0.0009 (9)
C260.0360 (10)0.0268 (13)0.0253 (9)−0.0012 (9)0.0122 (7)−0.0018 (8)
C270.0169 (8)0.0236 (12)0.0190 (8)0.0008 (7)0.0015 (6)0.0038 (7)

Geometric parameters (Å, °)

O1—C31.2246 (19)C13—C141.540 (3)
O2—C31.318 (2)C13—C171.544 (2)
O2—H1O20.8200C13—H13A0.9800
O3—C231.349 (2)C14—C151.537 (2)
O3—C201.478 (2)C14—C181.549 (2)
O4—C231.201 (3)C15—C161.542 (2)
C1—C21.532 (2)C15—H15A0.9700
C1—C101.552 (2)C15—H15B0.9700
C1—H1A0.9700C16—C171.552 (3)
C1—H1B0.9700C16—H16A0.9700
C2—C31.500 (2)C16—H16B0.9700
C2—H2A0.9700C17—C201.532 (2)
C2—H2B0.9700C17—H17A0.9800
C4—C251.374 (3)C18—H18A0.9600
C4—C261.456 (2)C18—H18B0.9600
C4—C51.526 (2)C18—H18C0.9600
C5—C61.530 (2)C19—H19A0.9600
C5—C101.564 (3)C19—H19B0.9600
C5—H5A0.9800C19—H19C0.9600
C6—C71.534 (2)C20—C241.522 (2)
C6—H6A0.9700C20—C211.535 (2)
C6—H6B0.9700C21—C221.520 (3)
C7—C81.539 (3)C21—H21A0.9700
C7—H7A0.9700C21—H21B0.9700
C7—H7B0.9700C22—C231.513 (3)
C8—C271.544 (2)C22—H22A0.9700
C8—C91.569 (2)C22—H22B0.9700
C8—C141.577 (2)C24—H24A0.9600
C9—C111.538 (2)C24—H24B0.9600
C9—C101.573 (2)C24—H24C0.9600
C9—H9A0.9800C25—H25A0.9300
C10—C191.540 (2)C25—H25B0.9300
C11—C121.538 (2)C26—H26A0.9600
C11—H11A0.9700C26—H26B0.9600
C11—H11B0.9700C26—H26C0.9600
C12—C131.520 (2)C27—H27A0.9600
C12—H12A0.9700C27—H27B0.9600
C12—H12B0.9700C27—H27C0.9600
C3—O2—H1O2109.5C13—C14—C18110.67 (13)
C23—O3—C20110.86 (14)C15—C14—C8117.57 (12)
C2—C1—C10118.06 (15)C13—C14—C8109.68 (14)
C2—C1—H1A107.8C18—C14—C8111.65 (12)
C10—C1—H1A107.8C14—C15—C16102.95 (13)
C2—C1—H1B107.8C14—C15—H15A111.2
C10—C1—H1B107.8C16—C15—H15A111.2
H1A—C1—H1B107.1C14—C15—H15B111.2
C3—C2—C1114.24 (15)C16—C15—H15B111.2
C3—C2—H2A108.7H15A—C15—H15B109.1
C1—C2—H2A108.7C15—C16—C17105.76 (14)
C3—C2—H2B108.7C15—C16—H16A110.6
C1—C2—H2B108.7C17—C16—H16A110.6
H2A—C2—H2B107.6C15—C16—H16B110.6
O1—C3—O2121.97 (16)C17—C16—H16B110.6
O1—C3—C2123.28 (17)H16A—C16—H16B108.7
O2—C3—C2114.73 (14)C20—C17—C13116.35 (15)
C25—C4—C26120.40 (15)C20—C17—C16111.16 (14)
C25—C4—C5118.84 (15)C13—C17—C16104.56 (13)
C26—C4—C5120.56 (15)C20—C17—H17A108.2
C4—C5—C6110.90 (13)C13—C17—H17A108.2
C4—C5—C10115.86 (15)C16—C17—H17A108.2
C6—C5—C10111.62 (12)C14—C18—H18A109.5
C4—C5—H5A105.9C14—C18—H18B109.5
C6—C5—H5A105.9H18A—C18—H18B109.5
C10—C5—H5A105.9C14—C18—H18C109.5
C5—C6—C7111.55 (13)H18A—C18—H18C109.5
C5—C6—H6A109.3H18B—C18—H18C109.5
C7—C6—H6A109.3C10—C19—H19A109.5
C5—C6—H6B109.3C10—C19—H19B109.5
C7—C6—H6B109.3H19A—C19—H19B109.5
H6A—C6—H6B108.0C10—C19—H19C109.5
C6—C7—C8113.22 (15)H19A—C19—H19C109.5
C6—C7—H7A108.9H19B—C19—H19C109.5
C8—C7—H7A108.9O3—C20—C24105.58 (15)
C6—C7—H7B108.9O3—C20—C17108.60 (13)
C8—C7—H7B108.9C24—C20—C17114.09 (14)
H7A—C7—H7B107.7O3—C20—C21103.40 (14)
C7—C8—C27108.07 (13)C24—C20—C21112.04 (13)
C7—C8—C9108.67 (12)C17—C20—C21112.27 (15)
C27—C8—C9112.73 (14)C22—C21—C20102.91 (16)
C7—C8—C14110.24 (14)C22—C21—H21A111.2
C27—C8—C14109.77 (12)C20—C21—H21A111.2
C9—C8—C14107.36 (12)C22—C21—H21B111.2
C11—C9—C8112.00 (12)C20—C21—H21B111.2
C11—C9—C10113.94 (14)H21A—C21—H21B109.1
C8—C9—C10115.97 (12)C23—C22—C21104.06 (14)
C11—C9—H9A104.5C23—C22—H22A110.9
C8—C9—H9A104.5C21—C22—H22A110.9
C10—C9—H9A104.5C23—C22—H22B110.9
C19—C10—C1104.15 (14)C21—C22—H22B110.9
C19—C10—C5112.46 (13)H22A—C22—H22B109.0
C1—C10—C5109.68 (12)O4—C23—O3122.54 (18)
C19—C10—C9113.76 (12)O4—C23—C22127.84 (17)
C1—C10—C9109.96 (12)O3—C23—C22109.62 (17)
C5—C10—C9106.81 (13)C20—C24—H24A109.5
C9—C11—C12112.96 (15)C20—C24—H24B109.5
C9—C11—H11A109.0H24A—C24—H24B109.5
C12—C11—H11A109.0C20—C24—H24C109.5
C9—C11—H11B109.0H24A—C24—H24C109.5
C12—C11—H11B109.0H24B—C24—H24C109.5
H11A—C11—H11B107.8C4—C25—H25A120.0
C13—C12—C11108.90 (13)C4—C25—H25B120.0
C13—C12—H12A109.9H25A—C25—H25B120.0
C11—C12—H12A109.9C4—C26—H26A109.5
C13—C12—H12B109.9C4—C26—H26B109.5
C11—C12—H12B109.9H26A—C26—H26B109.5
H12A—C12—H12B108.3C4—C26—H26C109.5
C12—C13—C14111.86 (12)H26A—C26—H26C109.5
C12—C13—C17119.33 (13)H26B—C26—H26C109.5
C14—C13—C17104.96 (14)C8—C27—H27A109.5
C12—C13—H13A106.7C8—C27—H27B109.5
C14—C13—H13A106.7H27A—C27—H27B109.5
C17—C13—H13A106.7C8—C27—H27C109.5
C15—C14—C13100.31 (12)H27A—C27—H27C109.5
C15—C14—C18106.36 (14)H27B—C27—H27C109.5
C10—C1—C2—C3179.42 (14)C12—C13—C14—C1861.31 (17)
C1—C2—C3—O1−167.70 (14)C17—C13—C14—C18−69.49 (15)
C1—C2—C3—O214.2 (2)C12—C13—C14—C8−62.31 (16)
C25—C4—C5—C6−127.01 (19)C17—C13—C14—C8166.89 (12)
C26—C4—C5—C647.9 (2)C7—C8—C14—C15−69.81 (18)
C25—C4—C5—C10104.4 (2)C27—C8—C14—C1549.1 (2)
C26—C4—C5—C10−80.6 (2)C9—C8—C14—C15171.98 (15)
C4—C5—C6—C7169.65 (14)C7—C8—C14—C13176.54 (12)
C10—C5—C6—C7−59.54 (18)C27—C8—C14—C13−64.53 (17)
C5—C6—C7—C857.01 (18)C9—C8—C14—C1358.33 (15)
C6—C7—C8—C2771.31 (17)C7—C8—C14—C1853.50 (18)
C6—C7—C8—C9−51.32 (17)C27—C8—C14—C18172.43 (15)
C6—C7—C8—C14−168.72 (12)C9—C8—C14—C18−64.71 (17)
C7—C8—C9—C11−174.60 (12)C13—C14—C15—C16−45.09 (16)
C27—C8—C9—C1165.63 (16)C18—C14—C15—C1670.21 (16)
C14—C8—C9—C11−55.38 (17)C8—C14—C15—C16−163.85 (15)
C7—C8—C9—C1052.28 (18)C14—C15—C16—C1731.41 (17)
C27—C8—C9—C10−67.49 (18)C12—C13—C17—C2087.32 (18)
C14—C8—C9—C10171.50 (13)C14—C13—C17—C20−146.36 (14)
C2—C1—C10—C19173.23 (14)C12—C13—C17—C16−149.67 (15)
C2—C1—C10—C5−66.19 (17)C14—C13—C17—C16−23.35 (15)
C2—C1—C10—C950.98 (19)C15—C16—C17—C20121.33 (15)
C4—C5—C10—C1958.99 (18)C15—C16—C17—C13−4.99 (17)
C6—C5—C10—C19−69.22 (17)C23—O3—C20—C2494.59 (15)
C4—C5—C10—C1−56.40 (17)C23—O3—C20—C17−142.66 (14)
C6—C5—C10—C1175.39 (12)C23—O3—C20—C21−23.24 (16)
C4—C5—C10—C9−175.53 (12)C13—C17—C20—O3−61.86 (17)
C6—C5—C10—C956.25 (15)C16—C17—C20—O3178.64 (13)
C11—C9—C10—C19−62.02 (18)C13—C17—C20—C2455.6 (2)
C8—C9—C10—C1970.2 (2)C16—C17—C20—C24−63.92 (19)
C11—C9—C10—C154.34 (17)C13—C17—C20—C21−175.56 (15)
C8—C9—C10—C1−173.43 (13)C16—C17—C20—C2164.93 (18)
C11—C9—C10—C5173.30 (12)O3—C20—C21—C2229.77 (16)
C8—C9—C10—C5−54.48 (16)C24—C20—C21—C22−83.45 (19)
C8—C9—C11—C1255.20 (17)C17—C20—C21—C22146.64 (15)
C10—C9—C11—C12−170.68 (12)C20—C21—C22—C23−26.18 (17)
C9—C11—C12—C13−54.70 (17)C20—O3—C23—O4−174.19 (16)
C11—C12—C13—C1458.51 (17)C20—O3—C23—C226.50 (18)
C11—C12—C13—C17−178.51 (14)C21—C22—C23—O4−166.08 (19)
C12—C13—C14—C15173.32 (12)C21—C22—C23—O313.18 (18)
C17—C13—C14—C1542.51 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1i0.821.882.6541 (18)156

Symmetry codes: (i) −x+2, y−1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2425).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Engelmeier, D., Hadacek, F., Pacher, F., Vajrodaya, S. & Greger, H. (2000). J. Agric. Food Chem 48, 1400–1404. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Greger, H., Pacher, T., Brem, B., Bacher, M. & Hofer, O. (2001). Phytochemistry, 57, 57–64. [PubMed]
  • Joycharat, N., Greger, H., Hofer, O. & Saifah, E. (2008). Phytochemistry, 69, 206–211. [PubMed]
  • Joycharat, N., Plodpai, P., Panthong, K., Yingyongnarongkul, B. &Voravuthikunchai, S. P. (2010). Can. J. Chem Submitted.
  • Kim, S., Salim, A. A., Swanson, S. M. & Kinghorn, A. D. (2006). Anti-Cancer Agent Med. Chem 6, 319–345. [PubMed]
  • Proksch, P., Giaisi, M., Treiber, M. K., Pulfi, K., Merling, A., Spring, H., Krammer, P. H. & Weber, M. L. (2005). J. Immunol 174, 7075–7084. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, Y. & Aalbersberg, W. (1992). Phytochemistry, 31, 4033–4035.
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography