PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): m432–m433.
Published online 2010 March 24. doi:  10.1107/S1600536810010196
PMCID: PMC2984081

Bis(isopropyl­triphenyl­phospho­nium) di-μ-iodido-bis­[iodidocopper(I)]

Abstract

The title compound, (C21H22P)2[Cu2I4], prepared from reaction between copper powder, iodine and isopropyl triphenyl­phospho­nium iodide in hydroxy­acetone (acetol), shows an already known Cu2I4 2− anion with a planar conformation [Cu—I range = 2.5108 (3)–2.5844 (3) Å and I—Cu—I range = 110.821 (10)–125.401 (10)°].

Related literature

For structurally fully characterized units containing a planar [Cu2I4]2− ion included in the Cambridge Structural Database (CSD; Allen, 2002 [triangle]), see: Asplund et al. (1982 [triangle]); Asplund & Jagner (1984a [triangle]); Hartl et al. (1985 [triangle]); Basu et al. (1987 [triangle]); Canty et al. (1987 [triangle]); Cunningham et al. (1990 [triangle]); Bhaduri et al. (1991 [triangle]); Pfitzner & Schmitz (1997 [triangle]); Allen et al. (1998 [triangle]); Su et al. (2002 [triangle]); Feng et al. (2006 [triangle]); Bowmaker et al. (2007 [triangle]); Cariati et al. (2007 [triangle]); Kia et al. (2007 [triangle]); Liu et al. (2007 [triangle]); Herres-Pawlis et al. (2008 [triangle]); Mishra et al. (2008 [triangle]). For those structures in the CSD containing a bent [Cu2I4]2− ion, see: Asplund & Jagner (1984b [triangle]); Ramaprabhu et al. (1994 [triangle]); Hoyer & Hartl (1992 [triangle]). For the extinction correction see: Becker & Coppens (1974 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m432-scheme1.jpg

Experimental

Crystal data

  • (C21H22P)2[Cu2I4]
  • M r = 1245.4
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m432-efi1.jpg
  • a = 11.5503 (1) Å
  • b = 12.2422 (1) Å
  • c = 15.2619 (1) Å
  • β = 94.91 (1)°
  • V = 2150.14 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.96 mm−1
  • T = 100 K
  • 0.34 × 0.24 × 0.11 mm

Data collection

  • Oxford Diffraction Xcalibur3 diffractometer with a Sapphire-3 CCD detector
  • Absorption correction: Gaussian (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.425, T max = 0.720
  • 59726 measured reflections
  • 7235 independent reflections
  • 5970 reflections with I > 3σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.059
  • S = 0.85
  • 7235 reflections
  • 227 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SUPERFLIP (Oszlányi & Sütő, 2004 [triangle]); program(s) used to refine structure: JANA2000 (Petříček et al., 2000 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: JANA2000.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010196/dn2549sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010196/dn2549Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Swedish Research Council is gratefully acknowledged.

supplementary crystallographic information

Comment

Copper halide complexes have been of great interested due to their wide structural variation. The copper atoms can be in trigonal or tetrahedral geometry and this is the main reason for so many structure variations.

A search in Cambridge Structural Database shows 20 different structures containing [Cu2I4]2- as the anion, the major difference between these are that different cations are employed in the structures. [Cu2I4]-2 unit can be in two different forms, planar or bent.

For being able to crystallize [Cu2I4]2- unit the cations needs to be large and bulky such as [N/P-R4]+ or [AsR4]+ (where R= alkyl /phenyl). Hartl et al. (1985) and Pfitzner & Schmitz (1997) discuss the different modification of [Cu2I4]2- unit with tetra phenylphosphonium as the cation.

By reacting copper powder, iodine and isopropyltriphenylphosphonium iodide in hydoxyacetone under nitrogen atmosphere and reflux colorless parallelepiped crystals are formed. X-ray crystallography shows that the mentioned crystals contain the well known [Cu2I4]2- as the anion and isopropyltriphenylphosphonium as the cation.

The anion shows some variation in the Cu–I distance 2.5108 (3)–2.5844 (3) Å and large variation in I–Cu–I angle 110.821 (19)–125.401 (10)°. The counter ion is a typical isopropyltriphenylphosphonium with P–C range 1.7909 (17)–1.8242 (17) Å, C–C (in isopropyl chain) range 1.387 (3)–1.400 (2) Å and (in phenyl rings) 1.536 (2)–1.539 (2) Å, The angles are in range C–P–C 107.29 (7)–110.57 (8)° and (P/)C–C–C 109.88 (11)–120.63 (16)°.

Experimental

Isopropyl triphenylphosphonium iodide (2.711 mmol), iodine (5.011 mmol) and copper powder (20.056 mmol) were mixed and heated under reflux in hydroxyacetone (50 ml) under a nitrogen atmosphere. After 3 hours the solution became pale yellow. The mixture was filtered while hot and solution was kept at 6°C. Well shaped parallelepiped crystals formed over the course of several days.

Refinement

The structures were solved by charge-flipping, giving the I, Cu, P and main part of the C positions. The remaining C positions were found using difference Fourier analysis. All non-hydrogen positions were refined using full matrix least squares. The hydrogen atoms were located by geometrical methods and were allowed to ride, with C–H = 1.00Å and Ueq = 1.2Uiso(C).

Figures

Fig. 1.
Molecular structure and atom-labelling scheme for the anion and cation respectively in (I). Non-H atoms are shown as 50% probability displacement ellipsoids.

Crystal data

(C21H22P)2[Cu2I4]F(000) = 1192
Mr = 1245.4Dx = 1.923 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 35772 reflections
a = 11.5503 (1) Åθ = 4.3–32.2°
b = 12.2422 (1) ŵ = 3.96 mm1
c = 15.2619 (1) ÅT = 100 K
β = 94.91 (1)°Parallelepiped, colorless
V = 2150.14 (3) Å30.34 × 0.24 × 0.11 mm
Z = 2

Data collection

Oxford Diffraction Xcalibur3 diffractometer with a Sapphire-3 CCD detector7235 independent reflections
Radiation source: Enhance (Mo) X-ray source5970 reflections with I > 3σ(I)
graphiteRint = 0.028
Detector resolution: 16.5467 pixels mm-1θmax = 32.3°, θmin = 4.3°
ω scansh = −16→16
Absorption correction: gaussian (CrysAlis RED; Oxford Diffraction, 2008)k = −18→17
Tmin = 0.425, Tmax = 0.720l = −22→22
59726 measured reflections

Refinement

Refinement on F2Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0025I2]
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max = 0.048
wR(F2) = 0.059Δρmax = 0.42 e Å3
S = 0.85Δρmin = −0.34 e Å3
7235 reflectionsExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
227 parametersExtinction coefficient: 64 (4)
H-atom parameters constrained

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.157523 (11)0.779996 (10)0.067564 (7)0.01803 (4)
I20.088940 (10)0.420511 (9)0.109927 (7)0.01722 (4)
Cu0.05477 (2)0.60384 (2)0.027808 (15)0.01978 (7)
P0.64953 (4)0.37043 (4)0.21738 (3)0.00966 (10)
C1p10.74345 (15)0.33415 (13)0.31293 (10)0.0109 (4)
C2p10.69514 (16)0.31940 (15)0.39296 (10)0.0143 (4)
C3p10.76541 (17)0.28472 (15)0.46633 (11)0.0173 (5)
C4p10.88223 (17)0.26343 (15)0.45940 (11)0.0176 (5)
C5p10.93029 (17)0.27634 (15)0.37964 (12)0.0167 (5)
C6p10.86142 (15)0.31277 (14)0.30603 (10)0.0135 (4)
C1p20.54471 (14)0.46880 (14)0.24661 (10)0.0112 (4)
C2p20.57038 (16)0.53997 (14)0.31737 (11)0.0144 (4)
C3p20.49367 (16)0.62306 (15)0.33355 (11)0.0170 (5)
C4p20.39280 (16)0.63785 (15)0.27840 (12)0.0175 (5)
C5p20.36630 (16)0.56700 (15)0.20803 (12)0.0160 (5)
C6p20.44136 (15)0.48239 (14)0.19229 (10)0.0134 (4)
C1p30.57856 (14)0.24771 (13)0.17715 (9)0.0109 (4)
C2p30.63395 (15)0.18004 (14)0.11953 (10)0.0129 (4)
C3p30.58422 (16)0.08039 (14)0.09410 (11)0.0158 (5)
C4p30.48000 (16)0.04790 (15)0.12623 (11)0.0164 (5)
C5p30.42538 (16)0.11456 (15)0.18379 (11)0.0163 (5)
C6p30.47469 (16)0.21450 (14)0.21023 (11)0.0141 (4)
C10.79164 (16)0.53620 (14)0.16800 (11)0.0153 (4)
C20.73307 (15)0.43027 (13)0.13327 (10)0.0116 (4)
C30.65453 (16)0.45208 (16)0.04843 (11)0.0163 (5)
H2p10.6106190.3336640.3974950.0171*
H3p10.7316770.2751480.5240390.0207*
H4p10.9323410.2385560.5123220.0211*
H5p11.0142780.2594810.3750660.0201*
H6p10.8959320.3235650.2487560.0162*
H2p20.6439910.5308560.3561760.0173*
H3p20.5109370.6725960.3851130.0204*
H4p20.3390480.69950.2892340.021*
H5p20.2931240.5772680.1689350.0192*
H6p20.4219470.4310030.1422510.0161*
H2p30.7088140.2033520.0968680.0154*
H3p30.6231050.0319340.0527660.019*
H4p30.444416−0.0238180.1076940.0197*
H5p30.3505590.0908240.2063070.0196*
H6p30.4362580.2620440.2524510.0169*
H110.8450370.5196820.2214170.0184*
H120.8371360.5686420.1215540.0184*
H130.7308750.5892580.1836350.0184*
H310.6202050.3816510.0254230.0196*
H320.5907440.5032850.0614060.0196*
H330.7016250.4854510.0033630.0196*
H20.7947090.3774090.1189670.014*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.01934 (7)0.01958 (7)0.01576 (6)0.00147 (4)0.00501 (4)0.00177 (4)
I20.01794 (7)0.01351 (6)0.02015 (6)−0.00133 (4)0.00141 (4)0.00095 (4)
Cu0.01934 (12)0.02089 (12)0.01968 (10)0.00260 (9)0.00502 (8)0.00201 (8)
P0.00942 (19)0.00998 (19)0.00955 (15)0.00068 (14)0.00067 (13)−0.00029 (13)
C1p10.0118 (7)0.0095 (7)0.0110 (6)−0.0001 (6)−0.0015 (5)−0.0001 (5)
C2p10.0144 (8)0.0142 (8)0.0143 (7)−0.0009 (6)0.0012 (6)0.0014 (6)
C3p10.0222 (9)0.0170 (8)0.0121 (7)−0.0025 (7)−0.0015 (6)0.0016 (6)
C4p10.0215 (9)0.0143 (8)0.0155 (7)−0.0017 (7)−0.0070 (6)0.0021 (6)
C5p10.0141 (8)0.0133 (8)0.0219 (8)0.0006 (6)−0.0032 (6)0.0010 (6)
C6p10.0141 (8)0.0111 (7)0.0152 (7)0.0001 (6)0.0004 (6)0.0003 (6)
C1p20.0101 (7)0.0118 (7)0.0116 (6)0.0017 (6)0.0009 (5)−0.0011 (5)
C2p20.0140 (8)0.0131 (8)0.0159 (7)0.0007 (6)0.0003 (6)−0.0036 (6)
C3p20.0173 (9)0.0143 (8)0.0197 (7)0.0004 (7)0.0025 (6)−0.0063 (6)
C4p20.0142 (8)0.0150 (8)0.0234 (8)0.0016 (7)0.0024 (6)−0.0038 (6)
C5p20.0118 (8)0.0163 (8)0.0197 (7)0.0019 (6)−0.0007 (6)−0.0014 (6)
C6p20.0119 (8)0.0138 (8)0.0142 (6)0.0006 (6)0.0000 (5)−0.0024 (6)
C1p30.0120 (8)0.0101 (7)0.0103 (6)0.0018 (6)0.0000 (5)−0.0002 (5)
C2p30.0136 (8)0.0123 (7)0.0127 (6)0.0013 (6)0.0013 (5)−0.0001 (5)
C3p30.0205 (9)0.0126 (8)0.0138 (7)0.0035 (6)−0.0017 (6)−0.0025 (6)
C4p30.0191 (9)0.0112 (8)0.0180 (7)−0.0006 (6)−0.0042 (6)0.0009 (6)
C5p30.0141 (8)0.0163 (8)0.0186 (7)−0.0028 (7)0.0017 (6)0.0030 (6)
C6p30.0150 (8)0.0141 (8)0.0134 (7)0.0010 (6)0.0031 (6)0.0003 (5)
C10.0153 (8)0.0128 (8)0.0180 (7)−0.0013 (6)0.0020 (6)0.0016 (6)
C20.0116 (8)0.0111 (7)0.0124 (6)0.0005 (6)0.0021 (5)0.0008 (5)
C30.0183 (9)0.0190 (9)0.0115 (6)−0.0004 (7)0.0002 (6)0.0024 (6)

Geometric parameters (Å, °)

I1—Cu2.5108 (3)C4p2—H4p21.0000
I2—Cu2.5844 (3)C5p2—C6p21.385 (3)
P—C1p11.7972 (15)C5p2—H5p21.0000
P—C1p21.7909 (17)C6p2—H6p21.0000
P—C1p31.7944 (17)C1p3—C2p31.402 (2)
P—C21.8242 (17)C1p3—C6p31.401 (3)
C1p1—C2p11.397 (2)C2p3—C3p31.390 (2)
C1p1—C6p11.400 (2)C2p3—H2p31.0000
C2p1—C3p11.392 (2)C3p3—C4p31.396 (3)
C2p1—H2p11.0000C3p3—H3p31.0000
C3p1—C4p11.387 (3)C4p3—C5p31.389 (3)
C3p1—H3p11.0000C4p3—H4p31.0000
C4p1—C5p11.390 (3)C5p3—C6p31.395 (3)
C4p1—H4p11.0000C5p3—H5p31.0000
C5p1—C6p11.393 (2)C6p3—H6p31.0000
C5p1—H5p11.0000C1—C21.536 (2)
C6p1—H6p11.0000C1—H111.0000
C1p2—C2p21.399 (2)C1—H121.0000
C1p2—C6p21.404 (2)C1—H131.0000
C2p2—C3p21.385 (3)C2—C31.539 (2)
C2p2—H2p21.0000C2—H21.0000
C3p2—C4p21.390 (3)C3—H311.0000
C3p2—H3p21.0000C3—H321.0000
C4p2—C5p21.394 (3)C3—H331.0000
Cu—I2—Cui69.179 (8)C4p2—C5p2—H5p2120.01
Cui—I2—Cu69.179 (8)C6p2—C5p2—H5p2120.01
I1—Cu—I2125.401 (10)C1p2—C6p2—C5p2119.97 (15)
I2i—Cu—I2110.821 (10)C1p2—C6p2—H6p2120.02
C1p1—P—C1p2109.76 (7)C5p2—C6p2—H6p2120.01
C1p1—P—C1p3107.29 (7)P—C1p3—C2p3119.33 (13)
C1p1—P—C2110.57 (8)P—C1p3—C6p3119.99 (12)
C1p2—P—C1p3110.45 (8)C2p3—C1p3—C6p3120.35 (15)
C1p2—P—C2108.34 (8)C1p3—C2p3—C3p3119.62 (16)
C1p3—P—C2110.43 (7)C1p3—C2p3—H2p3120.19
P—C1p1—C2p1118.87 (13)C3p3—C2p3—H2p3120.19
P—C1p1—C6p1120.59 (12)C2p3—C3p3—C4p3120.02 (16)
C2p1—C1p1—C6p1120.36 (14)C2p3—C3p3—H3p3119.99
C1p1—C2p1—C3p1119.58 (17)C4p3—C3p3—H3p3119.99
C1p1—C2p1—H2p1120.21C3p3—C4p3—C5p3120.44 (17)
C3p1—C2p1—H2p1120.21C3p3—C4p3—H4p3119.78
C2p1—C3p1—C4p1120.01 (16)C5p3—C4p3—H4p3119.78
C2p1—C3p1—H3p1120.00C4p3—C5p3—C6p3120.12 (17)
C4p1—C3p1—H3p1120.00C4p3—C5p3—H5p3119.94
C3p1—C4p1—C5p1120.63 (16)C6p3—C5p3—H5p3119.94
C3p1—C4p1—H4p1119.69C1p3—C6p3—C5p3119.44 (16)
C5p1—C4p1—H4p1119.69C1p3—C6p3—H6p3120.28
C4p1—C5p1—C6p1119.97 (17)C5p3—C6p3—H6p3120.28
C4p1—C5p1—H5p1120.02C2—C1—H11109.47
C6p1—C5p1—H5p1120.02C2—C1—H12109.47
C1p1—C6p1—C5p1119.44 (16)C2—C1—H13109.47
C1p1—C6p1—H6p1120.28H11—C1—H12109.47
C5p1—C6p1—H6p1120.28H11—C1—H13109.47
P—C1p2—C2p2120.52 (12)H12—C1—H13109.47
P—C1p2—C6p2119.43 (12)P—C2—C1109.88 (11)
C2p2—C1p2—C6p2119.68 (16)P—C2—C3110.64 (12)
C1p2—C2p2—C3p2119.89 (15)P—C2—H2108.84
C1p2—C2p2—H2p2120.06C1—C2—C3110.75 (14)
C3p2—C2p2—H2p2120.06C1—C2—H2108.72
C2p2—C3p2—C4p2120.25 (16)C3—C2—H2107.94
C2p2—C3p2—H3p2119.88C2—C3—H31109.47
C4p2—C3p2—H3p2119.88C2—C3—H32109.47
C3p2—C4p2—C5p2120.20 (17)C2—C3—H33109.47
C3p2—C4p2—H4p2119.90H31—C3—H32109.47
C5p2—C4p2—H4p2119.90H31—C3—H33109.47
C4p2—C5p2—C6p2119.97 (16)H32—C3—H33109.47

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2549).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Allen, D. W., Mifflin, J. P. L. & Coles, S. (1998). Chem Commun pp. 2115–2116.
  • Asplund, M. & Jagner, S. (1984a). Acta. Chem. Scand Ser. A.38, 297–301.
  • Asplund, M. & Jagner, S. (1984b). Acta. Chem. Scand Ser. A.38, 411–414.
  • Asplund, M., Jagner, S. & Nilsson, M. (1982). Acta. Chem. Scand Ser. A.36, 751–755.
  • Basu, A., Bhaduri, S., Sapre, N. Y. & Jones, P. G. (1987). Chem. Commun. pp. 1724–1725.
  • Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.
  • Bhaduri, S., Sapre, N. Y. & Jones, P. G. (1991). J. Chem. Soc. Dalton Trans. pp. 2539–2543.
  • Bowmaker, G. A., Bruce, M. I., Skelton, B. W., Somers, N. & White, A. H. (2007). Z. Anorg. Allg. Chem.633, 1024–1030.
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Canty, A. J., Engelhardt, L. M., Healy, P. C., Kidden, J. D., Minchin, N. J. & White, A. H. (1987). Aust. J. Chem.40, 1881–1891.
  • Cariati, E., Macchi, R., Roberto, D., Ugo, R., Galli, S., Masciocchi, N. & Sironi, A. (2007). Chem. Matter, 19, 3704–3711.
  • Cunningham, D., Gallagher, J. F., Higgins, T., McArdle, P., McGinley, J. & Sheerin, D. (1990). Chem. Commun. pp. 959–961.
  • Feng, H., Zhou, X. P., Wu, P., Li, D., Yin, Y. G. & Ng, S. W. (2006). Inorg. Chim. Acta, 359, 4027–4035.
  • Hartl, H., Brudgam, I. & Mahdjour Hassan Abadi, F. (1985). Z. Naturforsch. Teil B, 40, 1032–1039.
  • Herres-Pawlis, S., Haase, R., Akin, E., Florke, U. & Henkel, G. (2008). Z. Anorg. Allg. Chem.634, 295–298.
  • Hoyer, M. & Hartl, H. (1992). Z. Anorg. Allg. Chem.612, 45–50.
  • Kia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta.360, 3369–3375.
  • Liu, Y.-F., Chen, J.-Z. & Huang, C.-C. (2007). Acta Cryst. E63, m2957.
  • Mishra, S., Jeanneau, E., Daniele, D. & Hubert-Pfalzgraf, L. (2008). CrystEngComm, 10, 814–816.
  • Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134–141. [PubMed]
  • Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton,England.
  • Petříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000 Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.
  • Pfitzner, A. & Schmitz, D. (1997). Z. Anorg. Allg. Chem.623, 1555–1560.
  • Ramaprabhu, S., Ferretti, R., Lucken, E. A. C. & Bernardurelli, G. (1994). Inorg. Chim. Acta, 227, 153–157.
  • Su, C. Y., Cai, Y. P., Chen, C. L., Lissner, F., Kang, B. S. & Kaim, W. (2002). Angew. Chem. Int. Ed.41, 3371–3375. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography