PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o918.
Published online 2010 March 24. doi:  10.1107/S1600536810010494
PMCID: PMC2984069

2,4-Dichloro-N-(4-chloro­phen­yl)benzene­sulfonamide

Abstract

The mol­ecule of the title compound, C12H8Cl3NO2S, is twisted at the S atom, the C—SO2—NH—C torsion angle being 67.8 (2)°. The dihedral angle between the two benzene rings is 65.0 (1)°. The crystal structure features inversion dimers linked by pairs of N—H(...)O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006 [triangle]). For our study of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009 [triangle], 2010 [triangle]). For related structures, see: Gelbrich et al. (2007 [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o918-scheme1.jpg

Experimental

Crystal data

  • C12H8Cl3NO2S
  • M r = 336.60
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o918-efi1.jpg
  • a = 6.3925 (9) Å
  • b = 10.524 (2) Å
  • c = 11.684 (2) Å
  • α = 69.51 (1)°
  • β = 77.96 (1)°
  • γ = 77.30 (1)°
  • V = 710.8 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.79 mm−1
  • T = 299 K
  • 0.40 × 0.40 × 0.30 mm

Data collection

  • Oxford Diffraction Xcalibur single-crystal X-ray diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.744, T max = 0.798
  • 4462 measured reflections
  • 2873 independent reflections
  • 2514 reflections with I > 2σ(I)
  • R int = 0.008

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.091
  • S = 1.04
  • 2873 reflections
  • 175 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810010494/ci5064sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010494/ci5064Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In the present work, as part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009, 2010), the structure of 2,4-dichloro-N-(4-chlorophenyl)benzenesulfonamide (I) has been determined (Fig. 1). The molecule is twisted at the S—N bond with the C—SO2—NH—C torsion angle being 67.8 (2)° compared to the values of 60.6 (4)° (molecule 1), -59.7 (3)° (molecule 2), 63.9 (4)° (molecule 3) and 53.0 (4)° (molecule 4), in the four molecules of 2,4-dichloro-N- (4-methylphenyl)benzenesulfonamide (II) (Gowda et al., 2010) and -48.2 (2)° in 2,4-dichloro-N-(3,4-dichlorophenyl)benzenesulfonamide (III) (Gowda et al., 2009).

The sulfonyl benzene and the aniline benzene rings in (I) are tilted relative to each other by 65.0 (1)°, compared to the values of 85.2 (1)° (molecule 1), 80.5 (2)° (molecule 2, disordered orientation A), 80.1 (2)° (molecule 2, orientation B), 87.5 (7) (molecule 3, disordered orientation A), 87.0 (6)° (molecule 3, orienation B) and 72.4 (1)° (molecule 4) in the four molecules of (II) and 68.9 (1)° in (III). The other bond parameters in (I) are similar to those observed in (II), (III) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal structure, the pairs of intermolecular N—H···O hydrogen bonds (Table 1) link the molecules to form inversion-related dimers as shown in Fig. 2.

Experimental

The solution of 1,3-dichlorobenzene (10 ml) in chloroform (40 ml) was treated drop-wise with chlorosulfonic acid (25 ml) at 273 K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dichlorobenzenesulfonylchloride was treated with a stoichiometric amount of p-chloroaniline and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dichloro-N- (4-chlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and refined with the distance restraint N–H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C–H = 0.93 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C12H8Cl3NO2SZ = 2
Mr = 336.60F(000) = 340
Triclinic, P1Dx = 1.573 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3925 (9) ÅCell parameters from 2802 reflections
b = 10.524 (2) Åθ = 3.2–27.7°
c = 11.684 (2) ŵ = 0.79 mm1
α = 69.51 (1)°T = 299 K
β = 77.96 (1)°Prism, colourless
γ = 77.30 (1)°0.40 × 0.40 × 0.30 mm
V = 710.8 (2) Å3

Data collection

Oxford Diffraction Xcalibur single-crystal X-ray diffractometer with a Sapphire CCD detector2873 independent reflections
Radiation source: fine-focus sealed tube2514 reflections with I > 2σ(I)
graphiteRint = 0.008
Rotation method data acquisition using ω and [var phi] scansθmax = 26.4°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −7→7
Tmin = 0.744, Tmax = 0.798k = −13→13
4462 measured reflectionsl = −14→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0386P)2 + 0.4934P] where P = (Fo2 + 2Fc2)/3
2873 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = −0.47 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2300 (3)−0.1157 (2)0.30386 (18)0.0362 (4)
C20.1233 (3)−0.1828 (2)0.25451 (18)0.0370 (4)
C3−0.0339 (4)−0.2602 (2)0.3281 (2)0.0449 (5)
H3−0.1049−0.30440.29490.054*
C4−0.0835 (4)−0.2707 (2)0.4523 (2)0.0504 (5)
C50.0190 (4)−0.2058 (3)0.5036 (2)0.0553 (6)
H5−0.0168−0.21360.58690.066*
C60.1766 (4)−0.1286 (2)0.4290 (2)0.0477 (5)
H60.2472−0.08500.46290.057*
C70.1442 (3)0.2193 (2)0.13604 (18)0.0357 (4)
C80.1996 (3)0.3448 (2)0.1231 (2)0.0430 (5)
H80.34290.35880.09710.052*
C90.0426 (4)0.4488 (2)0.1487 (2)0.0473 (5)
H90.07920.53290.13970.057*
C10−0.1696 (3)0.4259 (2)0.1880 (2)0.0421 (5)
C11−0.2275 (3)0.3009 (2)0.2035 (2)0.0420 (5)
H11−0.37030.28650.23170.050*
C12−0.0694 (3)0.1975 (2)0.17658 (19)0.0397 (4)
H12−0.10650.11350.18570.048*
N10.3104 (3)0.11422 (18)0.10621 (17)0.0432 (4)
H1N0.312 (4)0.100 (3)0.0395 (18)0.052*
O10.4832 (3)0.04803 (18)0.29394 (16)0.0551 (4)
O20.5937 (2)−0.08756 (17)0.14887 (15)0.0529 (4)
Cl10.17630 (10)−0.16945 (7)0.09860 (5)0.05343 (17)
Cl2−0.28179 (14)−0.36791 (9)0.54410 (7)0.0830 (3)
Cl3−0.36952 (11)0.55863 (7)0.21560 (8)0.0699 (2)
S10.42695 (8)−0.00974 (5)0.21258 (5)0.03973 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0351 (10)0.0349 (10)0.0358 (10)−0.0039 (8)−0.0043 (8)−0.0094 (8)
C20.0393 (10)0.0357 (10)0.0334 (10)−0.0018 (8)−0.0043 (8)−0.0109 (8)
C30.0463 (12)0.0424 (11)0.0464 (12)−0.0104 (9)−0.0050 (9)−0.0138 (9)
C40.0497 (13)0.0499 (13)0.0429 (12)−0.0139 (10)0.0019 (10)−0.0056 (10)
C50.0659 (15)0.0634 (15)0.0325 (11)−0.0148 (12)−0.0011 (10)−0.0112 (10)
C60.0557 (13)0.0513 (13)0.0384 (11)−0.0118 (10)−0.0073 (10)−0.0149 (10)
C70.0369 (10)0.0344 (10)0.0335 (9)−0.0039 (8)−0.0044 (8)−0.0095 (8)
C80.0365 (10)0.0412 (11)0.0480 (12)−0.0122 (9)−0.0032 (9)−0.0081 (9)
C90.0525 (13)0.0337 (10)0.0574 (13)−0.0131 (9)−0.0071 (10)−0.0134 (9)
C100.0425 (11)0.0373 (10)0.0454 (11)−0.0003 (9)−0.0070 (9)−0.0152 (9)
C110.0340 (10)0.0450 (11)0.0483 (12)−0.0082 (9)−0.0047 (9)−0.0159 (9)
C120.0402 (10)0.0365 (10)0.0462 (11)−0.0098 (8)−0.0065 (9)−0.0154 (9)
N10.0445 (10)0.0402 (9)0.0379 (9)−0.0001 (8)−0.0002 (8)−0.0113 (8)
O10.0531 (9)0.0575 (10)0.0612 (10)−0.0182 (8)−0.0146 (8)−0.0175 (8)
O20.0368 (8)0.0504 (9)0.0592 (10)0.0036 (7)0.0019 (7)−0.0141 (8)
Cl10.0641 (4)0.0632 (4)0.0384 (3)−0.0168 (3)0.0000 (2)−0.0230 (3)
Cl20.0816 (5)0.0924 (6)0.0669 (5)−0.0470 (4)0.0183 (4)−0.0121 (4)
Cl30.0592 (4)0.0491 (3)0.0987 (5)0.0051 (3)0.0000 (4)−0.0350 (4)
S10.0324 (3)0.0389 (3)0.0448 (3)−0.0049 (2)−0.0031 (2)−0.0116 (2)

Geometric parameters (Å, °)

C1—C61.395 (3)C7—N11.440 (3)
C1—C21.398 (3)C8—C91.384 (3)
C1—S11.787 (2)C8—H80.93
C2—C31.387 (3)C9—C101.384 (3)
C2—Cl11.743 (2)C9—H90.93
C3—C41.389 (3)C10—C111.384 (3)
C3—H30.93C10—Cl31.746 (2)
C4—C51.380 (4)C11—C121.389 (3)
C4—Cl21.743 (2)C11—H110.93
C5—C61.391 (3)C12—H120.93
C5—H50.93N1—S11.6203 (19)
C6—H60.93N1—H1N0.839 (16)
C7—C121.391 (3)O1—S11.4305 (17)
C7—C81.391 (3)O2—S11.4398 (16)
C6—C1—C2118.88 (19)C7—C8—H8119.8
C6—C1—S1118.25 (16)C10—C9—C8119.11 (19)
C2—C1—S1122.84 (15)C10—C9—H9120.4
C3—C2—C1120.79 (18)C8—C9—H9120.4
C3—C2—Cl1117.32 (16)C9—C10—C11121.48 (19)
C1—C2—Cl1121.87 (15)C9—C10—Cl3119.21 (17)
C2—C3—C4118.9 (2)C11—C10—Cl3119.30 (16)
C2—C3—H3120.6C10—C11—C12119.08 (19)
C4—C3—H3120.6C10—C11—H11120.5
C5—C4—C3121.7 (2)C12—C11—H11120.5
C5—C4—Cl2119.76 (18)C11—C12—C7120.12 (18)
C3—C4—Cl2118.58 (19)C11—C12—H12119.9
C4—C5—C6119.0 (2)C7—C12—H12119.9
C4—C5—H5120.5C7—N1—S1121.38 (14)
C6—C5—H5120.5C7—N1—H1N117.2 (18)
C5—C6—C1120.8 (2)S1—N1—H1N117.4 (18)
C5—C6—H6119.6O1—S1—O2119.68 (10)
C1—C6—H6119.6O1—S1—N1108.21 (10)
C12—C7—C8119.89 (18)O2—S1—N1105.97 (10)
C12—C7—N1121.13 (18)O1—S1—C1105.62 (10)
C8—C7—N1118.99 (18)O2—S1—C1109.05 (10)
C9—C8—C7120.31 (19)N1—S1—C1107.86 (10)
C9—C8—H8119.8
C6—C1—C2—C30.4 (3)C8—C9—C10—Cl3−177.94 (18)
S1—C1—C2—C3−177.75 (16)C9—C10—C11—C12−1.4 (3)
C6—C1—C2—Cl1178.71 (16)Cl3—C10—C11—C12177.38 (17)
S1—C1—C2—Cl10.6 (2)C10—C11—C12—C70.8 (3)
C1—C2—C3—C4−0.3 (3)C8—C7—C12—C110.3 (3)
Cl1—C2—C3—C4−178.66 (17)N1—C7—C12—C11−179.30 (19)
C2—C3—C4—C50.2 (4)C12—C7—N1—S1−81.8 (2)
C2—C3—C4—Cl2179.86 (17)C8—C7—N1—S198.6 (2)
C3—C4—C5—C6−0.3 (4)C7—N1—S1—O1−46.02 (19)
Cl2—C4—C5—C6−179.93 (19)C7—N1—S1—O2−175.53 (16)
C4—C5—C6—C10.4 (4)C7—N1—S1—C167.79 (18)
C2—C1—C6—C5−0.5 (3)C6—C1—S1—O1−2.80 (19)
S1—C1—C6—C5177.76 (19)C2—C1—S1—O1175.37 (16)
C12—C7—C8—C9−0.9 (3)C6—C1—S1—O2127.02 (17)
N1—C7—C8—C9178.7 (2)C2—C1—S1—O2−54.81 (19)
C7—C8—C9—C100.3 (3)C6—C1—S1—N1−118.33 (17)
C8—C9—C10—C110.8 (3)C2—C1—S1—N159.84 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.84 (2)2.20 (2)3.014 (3)163 (2)

Symmetry codes: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5064).

References

  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o1940. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o190. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography