PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o989.
Published online 2010 March 31. doi:  10.1107/S1600536810011529
PMCID: PMC2984068

2,4-Dimethyl-N-(3-methyl­phen­yl)benzene­sulfonamide

Abstract

In the structure of the title compound, C15H17NO2S, the dihedral angle between the two aromatic rings is 47.1 (1)°. In the crystal structure, mol­ecules are connected by N—H(...)O hydrogen bonds, forming C(4) chains running along the c axis.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006 [triangle]). For our studies of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009 [triangle], 2010 [triangle]); Nirmala et al. (2009 [triangle]). For related structures, see: Gelbrich et al. (2007 [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o989-scheme1.jpg

Experimental

Crystal data

  • C15H17NO2S
  • M r = 275.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o989-efi1.jpg
  • a = 9.110 (1) Å
  • b = 15.367 (2) Å
  • c = 10.422 (1) Å
  • β = 104.05 (1)°
  • V = 1415.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 299 K
  • 0.40 × 0.40 × 0.26 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.915, T max = 0.944
  • 5538 measured reflections
  • 2870 independent reflections
  • 2375 reflections with I > 2σ(I)
  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.112
  • S = 1.06
  • 2870 reflections
  • 178 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011529/bt5222sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011529/bt5222Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of a study of the effect of substitutions on the structures of N-(aryl)-arylsulfonamides (Gowda et al., 2009; Gowda et al., 2010; Nirmala et al., 2009), in the present work, the structure of 2,4-dimethyl-N-(3-methylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the S═O bonds. The molecule is twisted at the S—N bond with the C1—SO2—NH—C7 torsion angle of -58.4 (2)°, compared to the values of 71.6 (1)° in 2,4-dimethyl-N-(3-methylphenyl)benzenesulfonamide (II)(Nirmala et al., 2009), -46.1 (3)° (molecule 1) & 47.7 (3)° (molecule 2) in the two molecules of 2,4-dimethyl-N-(phenyl)- benzenesulfonamide (III)(Gowda et al., 2009) and 55.8 (2)° and -58.4 (3)°, respectively, in the 2 molecules of N- (3-methylphenyl)benzenesulfonamide (IV)(Gowda et al., 2010). The conformation of the N—H bond in (I) is anti to the 3-methyl group in the aniline benzene ring, compared the syn conformation observed between the N—H bond and the 3-methyl group in (IV).

The sulfonyl benzene and the aniline benzene rings in (I) are tilted relative to each other by 47.1 (1)°, compared to the values of 47.0 (1)° in (II), 67.5 (1)° in molecule 1 and 72.9 (1)° in molecule 2 of (III), and 67.9 (1)° in molecule 1 and 68.6 (1)° in molecule 2 of (IV).

The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing shows that the molecules are connected by N—H···O hydrogen bonds (Table 1) to chains running along the c axis (Fig. 2).

Experimental

The solution of 1,3-xylene (1,3-dimethylbenzene) (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with m-toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dimethyl-N-(3-methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). The prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and its positional parameters were refined. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C15H17NO2SF(000) = 584
Mr = 275.36Dx = 1.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3146 reflections
a = 9.110 (1) Åθ = 2.6–27.7°
b = 15.367 (2) ŵ = 0.23 mm1
c = 10.422 (1) ÅT = 299 K
β = 104.05 (1)°Prism, colourless
V = 1415.4 (3) Å30.40 × 0.40 × 0.26 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2870 independent reflections
Radiation source: fine-focus sealed tube2375 reflections with I > 2σ(I)
graphiteRint = 0.012
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −11→9
Tmin = 0.915, Tmax = 0.944k = −19→14
5538 measured reflectionsl = −13→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0485P)2 + 0.8232P] where P = (Fo2 + 2Fc2)/3
2870 reflections(Δ/σ)max = 0.014
178 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4436 (2)0.60399 (12)0.09959 (19)0.0371 (4)
C20.4722 (2)0.55232 (13)0.2140 (2)0.0411 (4)
C30.3789 (2)0.48048 (14)0.2118 (2)0.0492 (5)
H30.39620.44500.28630.059*
C40.2619 (2)0.45894 (14)0.1049 (3)0.0522 (6)
C50.2385 (3)0.51066 (16)−0.0060 (2)0.0567 (6)
H50.16160.4968−0.07970.068*
C60.3279 (2)0.58303 (15)−0.0092 (2)0.0491 (5)
H60.31030.6177−0.08460.059*
C70.3096 (2)0.79578 (12)0.12108 (18)0.0361 (4)
C80.2602 (2)0.84940 (13)0.01270 (19)0.0415 (4)
H80.33020.8725−0.02980.050*
C90.1078 (2)0.86943 (14)−0.0339 (2)0.0485 (5)
C100.0062 (3)0.83549 (16)0.0326 (3)0.0574 (6)
H10−0.09630.84800.00270.069*
C110.0547 (3)0.78367 (17)0.1417 (3)0.0579 (6)
H11−0.01500.76220.18580.069*
C120.2064 (2)0.76310 (15)0.1869 (2)0.0470 (5)
H120.23880.72770.26070.056*
C130.5968 (3)0.56894 (17)0.3359 (2)0.0578 (6)
H13A0.59260.62840.36290.069*
H13B0.69290.55780.31680.069*
H13C0.58410.53120.40580.069*
C140.1627 (3)0.38099 (18)0.1097 (3)0.0747 (8)
H14A0.10460.39090.17380.090*
H14B0.22480.33030.13410.090*
H14C0.09550.37220.02430.090*
C150.0547 (3)0.92755 (19)−0.1527 (3)0.0722 (8)
H15A0.13170.9310−0.20100.087*
H15B0.03450.9847−0.12390.087*
H15C−0.03610.9040−0.20870.087*
N10.46833 (19)0.77649 (11)0.16714 (16)0.0385 (4)
H1N0.499 (3)0.7705 (15)0.249 (2)0.046*
O10.69751 (16)0.69397 (11)0.16345 (16)0.0528 (4)
O20.51059 (18)0.72673 (10)−0.04494 (14)0.0497 (4)
S10.54326 (5)0.70137 (3)0.09104 (5)0.03742 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0366 (9)0.0369 (10)0.0394 (10)0.0039 (8)0.0121 (8)−0.0016 (8)
C20.0402 (10)0.0411 (11)0.0437 (11)0.0093 (8)0.0132 (8)0.0034 (8)
C30.0516 (12)0.0411 (11)0.0600 (13)0.0067 (9)0.0230 (10)0.0058 (10)
C40.0462 (12)0.0414 (11)0.0754 (16)−0.0002 (9)0.0270 (11)−0.0091 (11)
C50.0492 (13)0.0552 (14)0.0613 (14)−0.0057 (11)0.0049 (10)−0.0138 (11)
C60.0516 (12)0.0511 (13)0.0411 (11)0.0000 (10)0.0044 (9)−0.0020 (9)
C70.0386 (10)0.0353 (10)0.0351 (9)−0.0017 (8)0.0106 (7)−0.0069 (8)
C80.0456 (11)0.0397 (10)0.0417 (10)−0.0010 (9)0.0154 (8)−0.0017 (8)
C90.0483 (12)0.0447 (12)0.0512 (12)0.0073 (9)0.0093 (9)−0.0012 (9)
C100.0404 (12)0.0573 (14)0.0746 (16)0.0049 (10)0.0141 (11)−0.0018 (12)
C110.0488 (13)0.0625 (15)0.0695 (15)−0.0050 (11)0.0283 (11)0.0010 (12)
C120.0501 (12)0.0504 (12)0.0434 (11)−0.0025 (10)0.0167 (9)0.0015 (9)
C130.0599 (14)0.0602 (14)0.0476 (13)0.0055 (12)0.0021 (10)0.0126 (11)
C140.0625 (16)0.0534 (15)0.116 (2)−0.0128 (12)0.0367 (16)−0.0095 (15)
C150.0686 (17)0.0737 (18)0.0720 (17)0.0219 (14)0.0124 (13)0.0188 (14)
N10.0411 (9)0.0435 (9)0.0297 (8)−0.0028 (7)0.0064 (7)−0.0042 (7)
O10.0348 (8)0.0641 (10)0.0587 (9)−0.0024 (7)0.0101 (7)0.0024 (8)
O20.0614 (9)0.0565 (9)0.0359 (7)−0.0010 (7)0.0207 (7)0.0015 (7)
S10.0361 (3)0.0441 (3)0.0336 (3)−0.0008 (2)0.01146 (18)0.0008 (2)

Geometric parameters (Å, °)

C1—C61.386 (3)C10—C111.371 (4)
C1—C21.403 (3)C10—H100.9300
C1—S11.764 (2)C11—C121.385 (3)
C2—C31.390 (3)C11—H110.9300
C2—C131.506 (3)C12—H120.9300
C3—C41.383 (3)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.376 (3)C13—H13C0.9600
C4—C141.509 (3)C14—H14A0.9600
C5—C61.383 (3)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—H60.9300C15—H15A0.9600
C7—C81.382 (3)C15—H15B0.9600
C7—C121.386 (3)C15—H15C0.9600
C7—N11.439 (2)N1—S11.6402 (17)
C8—C91.390 (3)N1—H1N0.83 (2)
C8—H80.9300O1—S11.4291 (15)
C9—C101.385 (3)O2—S11.4298 (15)
C9—C151.508 (3)
C6—C1—C2120.74 (19)C12—C11—H11119.7
C6—C1—S1117.03 (16)C11—C12—C7119.4 (2)
C2—C1—S1122.10 (15)C11—C12—H12120.3
C3—C2—C1116.67 (19)C7—C12—H12120.3
C3—C2—C13118.75 (19)C2—C13—H13A109.5
C1—C2—C13124.57 (19)C2—C13—H13B109.5
C4—C3—C2123.5 (2)H13A—C13—H13B109.5
C4—C3—H3118.2C2—C13—H13C109.5
C2—C3—H3118.2H13A—C13—H13C109.5
C5—C4—C3118.1 (2)H13B—C13—H13C109.5
C5—C4—C14121.0 (2)C4—C14—H14A109.5
C3—C4—C14120.9 (2)C4—C14—H14B109.5
C4—C5—C6120.8 (2)H14A—C14—H14B109.5
C4—C5—H5119.6C4—C14—H14C109.5
C6—C5—H5119.6H14A—C14—H14C109.5
C5—C6—C1120.1 (2)H14B—C14—H14C109.5
C5—C6—H6119.9C9—C15—H15A109.5
C1—C6—H6119.9C9—C15—H15B109.5
C8—C7—C12119.67 (19)H15A—C15—H15B109.5
C8—C7—N1119.79 (17)C9—C15—H15C109.5
C12—C7—N1120.51 (18)H15A—C15—H15C109.5
C7—C8—C9121.15 (19)H15B—C15—H15C109.5
C7—C8—H8119.4C7—N1—S1119.08 (13)
C9—C8—H8119.4C7—N1—H1N115.2 (16)
C10—C9—C8118.3 (2)S1—N1—H1N109.8 (16)
C10—C9—C15120.9 (2)O1—S1—O2119.10 (9)
C8—C9—C15120.8 (2)O1—S1—N1105.78 (9)
C11—C10—C9120.9 (2)O2—S1—N1106.05 (9)
C11—C10—H10119.5O1—S1—C1110.99 (9)
C9—C10—H10119.5O2—S1—C1107.19 (9)
C10—C11—C12120.6 (2)N1—S1—C1107.04 (9)
C10—C11—H11119.7
C6—C1—C2—C3−0.2 (3)C8—C9—C10—C110.2 (4)
S1—C1—C2—C3175.52 (14)C15—C9—C10—C11−179.0 (2)
C6—C1—C2—C13178.9 (2)C9—C10—C11—C12−0.9 (4)
S1—C1—C2—C13−5.4 (3)C10—C11—C12—C70.3 (4)
C1—C2—C3—C4−0.5 (3)C8—C7—C12—C111.0 (3)
C13—C2—C3—C4−179.7 (2)N1—C7—C12—C11179.05 (19)
C2—C3—C4—C51.2 (3)C8—C7—N1—S1−80.5 (2)
C2—C3—C4—C14−178.8 (2)C12—C7—N1—S1101.5 (2)
C3—C4—C5—C6−1.2 (3)C7—N1—S1—O1−176.76 (14)
C14—C4—C5—C6178.8 (2)C7—N1—S1—O255.85 (17)
C4—C5—C6—C10.5 (4)C7—N1—S1—C1−58.35 (17)
C2—C1—C6—C50.2 (3)C6—C1—S1—O1−148.09 (16)
S1—C1—C6—C5−175.76 (17)C2—C1—S1—O136.00 (19)
C12—C7—C8—C9−1.7 (3)C6—C1—S1—O2−16.48 (19)
N1—C7—C8—C9−179.83 (18)C2—C1—S1—O2167.61 (15)
C7—C8—C9—C101.1 (3)C6—C1—S1—N196.94 (17)
C7—C8—C9—C15−179.6 (2)C2—C1—S1—N1−78.97 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.83 (2)2.13 (3)2.932 (2)162 (2)

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5222).

References

  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65, o576. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o434. [PMC free article] [PubMed]
  • Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3210. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography