PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o885.
Published online 2010 March 20. doi:  10.1107/S1600536810009761
PMCID: PMC2984067

3-(3-Chloro­benzo­yl)-4-hydr­oxy-2H-1,2-benzothia­zine 1,1-dioxide

Abstract

In the title compound, C15H10ClNO4S, the heterocyclic thia­zine ring adopts a half-chair conformation with the S and N atoms displaced by 0.476 (5) and 0.227 (5) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The structure is stabilized by inter­molecular N—H(...)O and C—H(...)O hydrogen bonds. In addition, intra­molecular O—H(...)O and C—H(...)N inter­actions are also present.

Related literature

For the biological activity of 1,2-benzothia­zine derivatives, see: Ahmad et al. (2010 [triangle]); Lombardino & Wiseman, (1972 [triangle]); Gupta et al. (1993 [triangle], 2002 [triangle]); Zia-ur-Rehman et al. (2006 [triangle]); Berryman et al. (1998 [triangle]). For comparative bond distances, see: Allen et al. (1987 [triangle]). For related structures, see: Siddiqui et al. (2008 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-66-0o885-scheme1.jpg

Experimental

Crystal data

  • C15H10ClNO4S
  • M r = 335.75
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o885-efi1.jpg
  • a = 4.7151 (3) Å
  • b = 12.2879 (8) Å
  • c = 12.5809 (6) Å
  • α = 81.375 (3)°
  • β = 84.463 (3)°
  • γ = 85.608 (3)°
  • V = 715.88 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.43 mm−1
  • T = 295 K
  • 0.14 × 0.12 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.942, T max = 0.958
  • 4352 measured reflections
  • 3202 independent reflections
  • 2783 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.121
  • S = 1.09
  • 3202 reflections
  • 200 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810009761/pk2231sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810009761/pk2231Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HLS is grateful to the Institute of Chemistry, University of the Punjab, for financial support.

supplementary crystallographic information

Comment

1,2-Benzothiazine 1,1-dioxides represent a class of pharmaceutically important heterocyclic compounds that have received considerable attention because of their dynamic structural features and a wide range of biological activity, e.g., anti-inflammatory (Lombardino & Wiseman, 1972), analgesic (Gupta et al., 2002), anti-cancer (Gupta et al., 1993), anti-bacterial (Zia-ur-Rehman et al., 2006) and endothelin receptor antagonists (Berryman et al., 1998), etc. In continuation of our research on the synthesis of biologically active benzothiazine derivatives (Ahmad et al., 2010), we herein report the synthesis and crystal structure of the title compound.

The title molecule is presented in Fig. 1. The bond distances are as expected (Allen et al., 1987) and agree with the corresponding parameters reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine ring adopts a half chair conformation with atoms S1 and N1 displaced by 0.476 (5) and 0.227 (5) Å , respectively, on the opposite sides from the mean plane formed by the remaining ring atoms.

The structure is stabilized by intermolecular hydrogen bonds of the types N—H···O and C—H···O. In addition, intramolecular interactions O3—H3O···O4 and C15—H15···N1 are also present consolidating the crystal packing; details are provided in Table 1.

Experimental

Sodium metal (4.83 g, 210 mmol) was dissolved in dry methanol (35 ml) and 2-[2-(3-chlorophenyl)-2-oxoethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (10.07 g, 30 mmol) was added to it. The mixture was refluxed for 30 minutes. The contents of the flask were cooled to room temperature and pH was adjusted at 3.0 using 5% HCl. A pale yellow precipitate of the title compound was filtered and washed with cold methanol. Crystals suitable for crystallographic study were grown from a methanolic solution by slow evaporation at room temperature. Yield, 74%; m.p. 438-440 K.

Refinement

Though all the H atoms could be distinguished in the difference Fourier map, they were included at geometrically idealized positions and refined using a riding-model approximation with the following constraints: O—H, N—H and C—H distances were set to 0.82, 0.86 and 0.93 Å, respectively, and Uiso(H) = 1.2Ueq(parent atom). The final difference map was essentially featureless.

Figures

Fig. 1.
The title molecule with the displacement ellipsoids plotted at 30% probability level (Farrugia, 1997).

Crystal data

C15H10ClNO4SZ = 2
Mr = 335.75F(000) = 344
Triclinic, P1Dx = 1.558 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7151 (3) ÅCell parameters from 1649 reflections
b = 12.2879 (8) Åθ = 1.0–27.5°
c = 12.5809 (6) ŵ = 0.43 mm1
α = 81.375 (3)°T = 295 K
β = 84.463 (3)°Block, yellow
γ = 85.608 (3)°0.14 × 0.12 × 0.10 mm
V = 715.88 (7) Å3

Data collection

Nonius KappaCCD diffractometer3202 independent reflections
Radiation source: fine-focus sealed tube2783 reflections with I > 2σ(I)
graphiteRint = 0.027
ω and [var phi] scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −6→6
Tmin = 0.942, Tmax = 0.958k = −15→15
4352 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: difference Fourier map
wR(F2) = 0.121H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.025P)2 + 0.745P] where P = (Fo2 + 2Fc2)/3
3202 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Experimental. IR (KBr) 3157, 1615, 1358, 1156 cm-1, MS m/z: 335.2 [M+]. 1H NMR (DMSO-d6); 7.64 (t, 2H, J = 8.0 Hz, Ar—H), 7.75 (d, 2H, J = 8.0 Hz, Ar—H), 7.96 (d, 1H, J = 10.0 Hz, Ar—H), 7.96 (s, 1H, J = 16.4 Hz, Ar—H), 8.18 (t, 2H, J = 3.2 Hz, Ar—H).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.12832 (17)−0.15369 (6)0.14547 (7)0.0618 (2)
S1−0.00971 (13)0.31098 (5)0.38523 (5)0.03988 (17)
O10.1096 (5)0.34309 (18)0.47468 (16)0.0601 (6)
O2−0.2260 (4)0.23281 (16)0.40650 (15)0.0511 (5)
O3−0.0663 (5)0.30935 (17)0.04835 (15)0.0604 (6)
H3O0.03720.25960.02570.073*
O40.3079 (4)0.15059 (17)0.05644 (14)0.0553 (5)
N10.2456 (4)0.26558 (18)0.30655 (17)0.0441 (5)
H1N0.41440.25190.32770.053*
C1−0.1507 (5)0.4240 (2)0.3008 (2)0.0415 (5)
C2−0.2846 (7)0.5148 (2)0.3434 (3)0.0563 (7)
H2−0.28150.52040.41620.068*
C3−0.4223 (8)0.5961 (3)0.2754 (3)0.0715 (10)
H3−0.51250.65750.30250.086*
C4−0.4271 (9)0.5873 (3)0.1678 (3)0.0748 (10)
H4−0.52410.64210.12330.090*
C5−0.2904 (7)0.4985 (3)0.1253 (3)0.0623 (8)
H5−0.29260.49430.05220.075*
C6−0.1488 (5)0.4148 (2)0.1915 (2)0.0425 (5)
C7−0.0006 (5)0.3206 (2)0.1462 (2)0.0415 (5)
C80.1900 (5)0.2482 (2)0.20148 (19)0.0386 (5)
C90.3263 (5)0.1547 (2)0.1542 (2)0.0407 (5)
C100.4876 (5)0.0619 (2)0.21729 (19)0.0394 (5)
C110.7101 (5)0.0062 (2)0.1617 (2)0.0413 (5)
H110.76340.03090.08950.050*
C120.8495 (5)−0.0854 (2)0.2149 (2)0.0435 (6)
C130.7712 (7)−0.1251 (2)0.3214 (2)0.0553 (7)
H130.8680−0.18700.35620.066*
C140.5477 (7)−0.0714 (2)0.3752 (2)0.0589 (8)
H140.4910−0.09840.44650.071*
C150.4057 (6)0.0222 (2)0.3248 (2)0.0494 (6)
H150.25680.05830.36230.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0599 (4)0.0588 (4)0.0699 (5)0.0225 (3)−0.0186 (4)−0.0246 (4)
S10.0367 (3)0.0471 (3)0.0379 (3)0.0050 (2)−0.0090 (2)−0.0131 (2)
O10.0647 (13)0.0721 (14)0.0503 (11)0.0158 (10)−0.0234 (10)−0.0297 (10)
O20.0417 (10)0.0556 (11)0.0526 (11)−0.0028 (8)−0.0053 (8)0.0035 (9)
O30.0839 (15)0.0576 (13)0.0399 (10)0.0222 (11)−0.0180 (10)−0.0126 (9)
O40.0659 (13)0.0607 (12)0.0395 (10)0.0191 (10)−0.0104 (9)−0.0160 (8)
N10.0318 (10)0.0567 (13)0.0484 (12)0.0085 (9)−0.0125 (9)−0.0226 (10)
C10.0394 (13)0.0387 (12)0.0480 (14)0.0002 (10)−0.0061 (10)−0.0116 (10)
C20.0612 (18)0.0490 (16)0.0619 (17)0.0089 (13)−0.0079 (14)−0.0232 (13)
C30.084 (2)0.0411 (16)0.089 (3)0.0195 (15)−0.0117 (19)−0.0194 (15)
C40.095 (3)0.0494 (18)0.075 (2)0.0278 (17)−0.0176 (19)−0.0025 (15)
C50.078 (2)0.0501 (17)0.0551 (17)0.0170 (15)−0.0116 (15)−0.0028 (13)
C60.0442 (13)0.0365 (12)0.0466 (14)0.0033 (10)−0.0058 (11)−0.0067 (10)
C70.0455 (13)0.0409 (13)0.0389 (12)0.0028 (10)−0.0068 (10)−0.0092 (10)
C80.0358 (12)0.0424 (13)0.0390 (12)0.0015 (10)−0.0045 (9)−0.0118 (10)
C90.0389 (12)0.0435 (13)0.0409 (13)0.0001 (10)−0.0036 (10)−0.0109 (10)
C100.0428 (13)0.0381 (12)0.0385 (12)−0.0001 (10)−0.0051 (10)−0.0094 (9)
C110.0445 (13)0.0420 (13)0.0387 (12)0.0008 (10)−0.0066 (10)−0.0099 (10)
C120.0437 (13)0.0426 (13)0.0476 (14)0.0028 (10)−0.0130 (11)−0.0140 (11)
C130.073 (2)0.0411 (14)0.0527 (16)0.0030 (13)−0.0202 (14)−0.0049 (12)
C140.082 (2)0.0514 (16)0.0420 (15)−0.0081 (15)−0.0055 (14)−0.0009 (12)
C150.0567 (16)0.0492 (15)0.0428 (14)−0.0057 (12)0.0035 (12)−0.0122 (11)

Geometric parameters (Å, °)

Cl1—C121.739 (3)C4—H40.9300
S1—O11.4240 (18)C5—C61.394 (4)
S1—O21.434 (2)C5—H50.9300
S1—N11.604 (2)C6—C71.467 (3)
S1—C11.747 (3)C7—C81.377 (3)
O3—C71.327 (3)C8—C91.451 (3)
O3—H3O0.8200C9—C101.491 (3)
O4—C91.250 (3)C10—C151.395 (4)
N1—C81.422 (3)C10—C111.396 (3)
N1—H1N0.8600C11—C121.376 (3)
C1—C21.391 (4)C11—H110.9300
C1—C61.396 (3)C12—C131.380 (4)
C2—C31.380 (4)C13—C141.376 (4)
C2—H20.9300C13—H130.9300
C3—C41.377 (5)C14—C151.385 (4)
C3—H30.9300C14—H140.9300
C4—C51.376 (4)C15—H150.9300
O1—S1—O2118.25 (13)O3—C7—C8122.4 (2)
O1—S1—N1108.39 (12)O3—C7—C6115.1 (2)
O2—S1—N1109.12 (12)C8—C7—C6122.6 (2)
O1—S1—C1112.18 (12)C7—C8—N1118.7 (2)
O2—S1—C1106.33 (11)C7—C8—C9120.5 (2)
N1—S1—C1101.20 (12)N1—C8—C9120.8 (2)
C7—O3—H3O109.5O4—C9—C8119.2 (2)
C8—N1—S1119.34 (16)O4—C9—C10117.9 (2)
C8—N1—H1N120.3C8—C9—C10122.9 (2)
S1—N1—H1N120.3C15—C10—C11119.6 (2)
C2—C1—C6121.6 (2)C15—C10—C9122.6 (2)
C2—C1—S1120.7 (2)C11—C10—C9117.4 (2)
C6—C1—S1117.43 (18)C12—C11—C10119.3 (2)
C3—C2—C1118.6 (3)C12—C11—H11120.4
C3—C2—H2120.7C10—C11—H11120.4
C1—C2—H2120.7C11—C12—C13121.6 (2)
C4—C3—C2120.6 (3)C11—C12—Cl1119.0 (2)
C4—C3—H3119.7C13—C12—Cl1119.3 (2)
C2—C3—H3119.7C14—C13—C12118.9 (3)
C5—C4—C3120.9 (3)C14—C13—H13120.5
C5—C4—H4119.6C12—C13—H13120.5
C3—C4—H4119.6C13—C14—C15121.0 (3)
C4—C5—C6120.2 (3)C13—C14—H14119.5
C4—C5—H5119.9C15—C14—H14119.5
C6—C5—H5119.9C14—C15—C10119.6 (3)
C5—C6—C1118.2 (2)C14—C15—H15120.2
C5—C6—C7120.3 (2)C10—C15—H15120.2
C1—C6—C7121.5 (2)
O1—S1—N1—C8−167.9 (2)O3—C7—C8—N1−179.3 (2)
O2—S1—N1—C862.0 (2)C6—C7—C8—N1−0.1 (4)
C1—S1—N1—C8−49.8 (2)O3—C7—C8—C9−0.6 (4)
O1—S1—C1—C2−35.9 (3)C6—C7—C8—C9178.6 (2)
O2—S1—C1—C294.9 (2)S1—N1—C8—C736.5 (3)
N1—S1—C1—C2−151.2 (2)S1—N1—C8—C9−142.2 (2)
O1—S1—C1—C6150.4 (2)C7—C8—C9—O412.1 (4)
O2—S1—C1—C6−78.9 (2)N1—C8—C9—O4−169.2 (2)
N1—S1—C1—C635.0 (2)C7—C8—C9—C10−167.5 (2)
C6—C1—C2—C31.1 (5)N1—C8—C9—C1011.2 (4)
S1—C1—C2—C3−172.4 (3)O4—C9—C10—C15−143.7 (3)
C1—C2—C3—C40.2 (5)C8—C9—C10—C1535.9 (4)
C2—C3—C4—C5−1.3 (6)O4—C9—C10—C1129.3 (3)
C3—C4—C5—C61.2 (6)C8—C9—C10—C11−151.1 (2)
C4—C5—C6—C10.1 (5)C15—C10—C11—C12−1.6 (4)
C4—C5—C6—C7−179.4 (3)C9—C10—C11—C12−174.8 (2)
C2—C1—C6—C5−1.2 (4)C10—C11—C12—C131.3 (4)
S1—C1—C6—C5172.5 (2)C10—C11—C12—Cl1−179.47 (18)
C2—C1—C6—C7178.3 (3)C11—C12—C13—C140.2 (4)
S1—C1—C6—C7−8.0 (3)Cl1—C12—C13—C14−179.1 (2)
C5—C6—C7—O3−14.6 (4)C12—C13—C14—C15−1.3 (5)
C1—C6—C7—O3165.9 (2)C13—C14—C15—C100.9 (4)
C5—C6—C7—C8166.2 (3)C11—C10—C15—C140.5 (4)
C1—C6—C7—C8−13.3 (4)C9—C10—C15—C14173.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.032.872 (3)168
O3—H3O···O40.821.802.525 (3)146
C2—H2···O1ii0.932.543.279 (3)136
C14—H14···O2iii0.932.583.435 (3)153
C15—H15···N10.932.543.009 (4)112

Symmetry codes: (i) x+1, y, z; (ii) −x, −y+1, −z+1; (iii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2231).

References

  • Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem.45, 698–704. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Berryman, K. A., Edmunds, J. J., Bunker, A. M., Haleen, S., Bryant, J., Welch, K. M. & Doherty, A. M. (1998). Bioorg. Med. Chem.6, 1447–1456. [PubMed]
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gupta, S. K., Bansal, P., Bhardwaj, R. K., Jaiswal, J. & Velpandian, T. (2002). Skin Pharmacol. Appl. Skin Physiol.15, 105–111. [PubMed]
  • Gupta, R. R., Dev, P. K., Sharma, M. L., Rajoria, C. M., Gupta, A. & Nyati, M. (1993). Anticancer Drugs, 4, 589–592. [PubMed]
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Lombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem.15, 848–849. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175–1178. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography