PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 April 1; 66(Pt 4): o781–o782.
Published online 2010 March 10. doi:  10.1107/S1600536810008202
PMCID: PMC2984062

2-Amino-4-methyl­pyridinium trifluoro­acetate

Abstract

The asymmetric unit of the title compound, C6H9N2 +·C2F3O2 , contains two independent 2-amino-4-methyl­pyridinium cations and two independent trifluoro­acetate anions. The F atoms of both anions are disordered over two sets of sites, with site occupancies of 0.50 (3) and 0.50 (3) in one of the anions, and 0.756 (9) and 0.244 (9) in the other. In the crystal, the cations and anions are linked into chains along the b axis by N—H(...)O hydrogen bonds and these chains are cross-linked by C—H(...)O hydrogen bonds, forming a two-dimensional network lying parallel to (101). The crystal structure is further stabilized by π–π inter­actions between the pyridinium rings [centroid–centroid distances = 3.5842 (13) and 3.5665 (16) Å].

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997 [triangle]); Katritzky et al. (1996 [triangle]). For related structures, see: Kvick & Noordik (1977 [triangle]); Shen et al. (2008 [triangle]); Hemamalini & Fun (2010 [triangle]). For trifluoro­acetic acid, see: Rodrigues et al. (2001 [triangle]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991 [triangle]); Jeffrey (1997 [triangle]); Scheiner (1997 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o781-scheme1.jpg

Experimental

Crystal data

  • C6H9N2 +·C2F3O2
  • M r = 222.17
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o781-efi1.jpg
  • a = 8.5229 (2) Å
  • b = 11.0649 (3) Å
  • c = 11.6573 (3) Å
  • α = 81.208 (1)°
  • β = 72.199 (2)°
  • γ = 74.647 (1)°
  • V = 1006.26 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.14 mm−1
  • T = 296 K
  • 0.56 × 0.19 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.925, T max = 0.989
  • 21533 measured reflections
  • 5803 independent reflections
  • 3405 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070
  • wR(F 2) = 0.187
  • S = 1.06
  • 5803 reflections
  • 357 parameters
  • 114 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810008202/ci5038sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008202/ci5038Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks USM for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Trifluoroacetic acid (TFA) is a very strong carboxylic acid, easily volatile, and used for protein purifications. Several trifluoroacetate salts and their crystal structures have been reported (Rodrigues et al., 2001). The crystal structures of 2-amino-4-methylpyridine (Kvick & Noordik, 1977), 2-amino-4-methylpyridinium 4-aminobenzoate (Shen et al., 2008) have also been reported. We have recently reported the crystal structure of 2-amino-4-methylpyridinium 4-nitrobenzoate (Hemamalini & Fun, 2010). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-4-methylpyridinium cations (A and B) and two trifluoroacetate anions (A and B) (Fig. 1). Each 2-amino-4-methylpyridinium cation is planar, with a maximum deviation of 0.007 (3) Å for atom C6A in cation A and 0.011 (5) Å for atom C6B in cation B. The protonation of atoms N1A and N1B lead to a slight increase in C1A—N1A—C5A [122.3 (2)°] and C1B—N1B—C5B [121.7 (2)°] angles.

In the crystal packing (Fig. 2), the A (and B)-type 2-amino-4-methylpyridinium cations interact with the carboxylate groups of A (and B)-type trifluoroacetate anions through a pair of N—H···O hydrogen bonds, forming an R22(8) motif (Bernstein et al., 1995). The cation-anion pairs are linked into a chain along the b axis by N—H···O hydrogen bonds. The crystal structure is further stabilized by C—H···O (Table 1) hydrogen bonds and π–π interactions involving the N1A/C1A–C5A and N1A/C1A–C5A pyridine rings [centoid-to-centroid separation = 3.5842 (13) Å], and N1B/C1B–C5B and N1B/C1B–C5B rings [centoid-to-centroid separation = 3.5665 (16) Å].

Experimental

To a hot methanol solution (20 ml) of 2-amino-4-methylpyridine (27 mg, Aldrich) was added a few drops of trifluoroacetic acid. The solution was warmed over a water bath for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared after a few days.

Refinement

Atoms H1NA, H2NA, H3NA, H1NB, H2NB and H3NB were located in a difference Fourier map and refined; the N–H distances of the NH2 groups were restrained to be equal. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The F atoms of both anions are disordered over two positions, with site occupancies of 0.50 (3) and 0.50 (3) in one of the anions, and 0.756 (9) and 0.244 (9) in the other anion. In each anion, the C—F distances were restrained to be equal and the Uij components of F atoms were restrained to an approximate isotropic behaviour.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. All disorder components are shown.
Fig. 2.
The crystal packing of the title compound, showing the hydrogen-bonded (dashed lines) network.

Crystal data

C6H9N2+·C2F3O2Z = 4
Mr = 222.17F(000) = 456
Triclinic, P1Dx = 1.467 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5229 (2) ÅCell parameters from 4908 reflections
b = 11.0649 (3) Åθ = 2.6–30.0°
c = 11.6573 (3) ŵ = 0.14 mm1
α = 81.208 (1)°T = 296 K
β = 72.199 (2)°Plate, colourless
γ = 74.647 (1)°0.56 × 0.19 × 0.08 mm
V = 1006.26 (4) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5803 independent reflections
Radiation source: fine-focus sealed tube3405 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −11→11
Tmin = 0.925, Tmax = 0.989k = −15→15
21533 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0642P)2 + 0.3844P] where P = (Fo2 + 2Fc2)/3
5803 reflections(Δ/σ)max = 0.001
357 parametersΔρmax = 0.25 e Å3
114 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N1A0.3581 (3)0.99313 (18)0.21338 (18)0.0510 (5)
N2A0.2610 (3)0.8369 (2)0.1674 (2)0.0672 (6)
C1A0.4811 (3)1.0518 (2)0.2081 (2)0.0589 (6)
H1AA0.45381.12370.24900.071*
C2A0.6422 (3)1.0074 (3)0.1447 (2)0.0605 (6)
H2AA0.72581.04850.14120.073*
C3A0.6831 (3)0.8980 (2)0.0835 (2)0.0553 (6)
C4A0.5572 (3)0.8401 (2)0.0901 (2)0.0548 (6)
H4AA0.58290.76780.05000.066*
C5A0.3900 (3)0.8882 (2)0.1564 (2)0.0500 (6)
C6A0.8627 (4)0.8466 (3)0.0138 (3)0.0779 (8)
H6AA0.87210.7662−0.01250.117*
H6AB0.93580.83730.06450.117*
H6AC0.89510.9033−0.05540.117*
N1B0.2268 (3)0.49192 (19)0.32553 (19)0.0529 (5)
N2B0.1215 (4)0.3395 (2)0.2805 (2)0.0708 (7)
C1B0.2776 (3)0.5451 (3)0.4013 (2)0.0600 (7)
H1BB0.309 (4)0.622 (3)0.367 (3)0.072 (8)*
C2B0.2732 (3)0.4938 (3)0.5135 (3)0.0634 (7)
H2BA0.30740.53150.56480.076*
C3B0.2162 (3)0.3817 (3)0.5533 (2)0.0612 (6)
C4B0.1643 (3)0.3302 (2)0.4769 (2)0.0581 (6)
H4BA0.12480.25720.50270.070*
C5B0.1695 (3)0.3855 (2)0.3598 (2)0.0508 (6)
C6B0.2136 (6)0.3216 (4)0.6779 (3)0.0997 (12)
H6BA0.18250.24260.68770.149*
H6BB0.13260.37590.73650.149*
H6BC0.32400.30790.68940.149*
F1A0.7612 (16)0.1532 (10)0.5327 (7)0.084 (2)0.50 (3)
F2A0.6477 (14)0.1650 (13)0.3757 (10)0.102 (3)0.50 (3)
F3A0.6788 (15)0.0165 (9)0.5069 (8)0.093 (3)0.50 (3)
F1C0.7539 (17)0.1841 (16)0.5129 (13)0.110 (4)0.50 (3)
F2C0.6745 (18)0.2046 (15)0.3790 (11)0.122 (4)0.50 (3)
F3C0.6439 (18)0.0349 (13)0.4851 (15)0.117 (4)0.50 (3)
O1A0.9324 (3)−0.0511 (2)0.3165 (2)0.0937 (7)
O2A1.0382 (2)0.10073 (17)0.34606 (19)0.0712 (6)
C7A0.9242 (3)0.0450 (2)0.3593 (2)0.0562 (6)
C8A0.7515 (3)0.1063 (3)0.4389 (2)0.0636 (7)
F1B0.4287 (6)0.6567 (4)0.8679 (3)0.0917 (13)0.756 (9)
F2B0.1802 (5)0.6740 (7)0.8575 (4)0.136 (2)0.756 (9)
F3B0.3737 (6)0.5082 (4)0.8111 (4)0.1062 (14)0.756 (9)
F1D0.310 (2)0.7120 (8)0.8858 (9)0.101 (4)0.244 (9)
F2D0.1842 (14)0.6008 (13)0.8405 (11)0.094 (4)0.244 (9)
F3D0.4324 (15)0.5237 (15)0.8247 (14)0.122 (5)0.244 (9)
O1B0.2191 (3)0.4371 (2)1.03426 (19)0.0899 (7)
O2B0.2503 (3)0.60549 (17)1.09745 (16)0.0786 (6)
C7B0.2531 (3)0.5397 (2)1.0201 (2)0.0566 (6)
C8B0.3048 (3)0.5954 (3)0.8898 (2)0.0649 (7)
H1NA0.252 (4)1.022 (2)0.257 (2)0.057 (7)*
H2NA0.161 (3)0.869 (2)0.209 (2)0.062 (8)*
H3NA0.276 (4)0.775 (2)0.127 (2)0.077 (9)*
H1NB0.238 (3)0.524 (2)0.251 (3)0.058 (7)*
H2NB0.146 (4)0.368 (3)0.2065 (19)0.079 (10)*
H3NB0.078 (3)0.278 (2)0.301 (3)0.070 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N1A0.0562 (13)0.0494 (11)0.0466 (11)−0.0169 (9)−0.0063 (10)−0.0099 (8)
N2A0.0761 (17)0.0585 (14)0.0704 (15)−0.0299 (13)−0.0057 (13)−0.0204 (12)
C1A0.0699 (17)0.0555 (14)0.0587 (15)−0.0232 (13)−0.0167 (13)−0.0136 (11)
C2A0.0599 (16)0.0667 (16)0.0606 (15)−0.0210 (13)−0.0189 (13)−0.0064 (12)
C3A0.0599 (15)0.0566 (14)0.0451 (13)−0.0056 (12)−0.0168 (11)−0.0005 (10)
C4A0.0710 (16)0.0439 (12)0.0463 (13)−0.0077 (11)−0.0160 (12)−0.0049 (10)
C5A0.0684 (16)0.0418 (11)0.0407 (11)−0.0174 (11)−0.0143 (11)0.0007 (9)
C6A0.0636 (18)0.084 (2)0.076 (2)−0.0031 (15)−0.0145 (15)−0.0103 (16)
N1B0.0631 (13)0.0487 (11)0.0455 (11)−0.0230 (10)−0.0047 (10)−0.0029 (9)
N2B0.0989 (19)0.0645 (15)0.0620 (15)−0.0456 (14)−0.0189 (14)−0.0039 (12)
C1B0.0676 (17)0.0579 (15)0.0575 (15)−0.0305 (13)−0.0076 (12)−0.0056 (12)
C2B0.0653 (16)0.0714 (17)0.0621 (16)−0.0281 (14)−0.0186 (13)−0.0066 (13)
C3B0.0603 (15)0.0629 (15)0.0607 (15)−0.0179 (12)−0.0191 (12)0.0055 (12)
C4B0.0627 (15)0.0490 (13)0.0619 (15)−0.0228 (12)−0.0122 (12)0.0048 (11)
C5B0.0505 (13)0.0451 (12)0.0545 (14)−0.0159 (10)−0.0054 (10)−0.0068 (10)
C6B0.140 (3)0.101 (3)0.079 (2)−0.054 (2)−0.058 (2)0.0303 (19)
F1A0.096 (4)0.091 (4)0.054 (3)−0.014 (3)−0.010 (2)−0.012 (3)
F2A0.083 (4)0.122 (5)0.092 (4)0.007 (4)−0.037 (3)−0.012 (4)
F3A0.076 (4)0.117 (4)0.073 (4)−0.038 (3)0.000 (3)0.015 (3)
F1C0.101 (5)0.114 (6)0.127 (6)−0.038 (4)−0.010 (4)−0.068 (5)
F2C0.100 (5)0.125 (6)0.103 (5)0.013 (4)−0.025 (3)0.023 (4)
F3C0.080 (4)0.131 (6)0.146 (7)−0.068 (4)0.001 (4)−0.024 (4)
O1A0.0789 (14)0.0947 (16)0.1201 (19)−0.0387 (12)−0.0099 (13)−0.0498 (14)
O2A0.0621 (11)0.0612 (11)0.0907 (14)−0.0314 (9)−0.0031 (10)−0.0147 (10)
C7A0.0600 (15)0.0598 (14)0.0554 (14)−0.0271 (12)−0.0143 (12)−0.0044 (11)
C8A0.0613 (16)0.0771 (19)0.0573 (16)−0.0277 (14)−0.0137 (13)−0.0049 (13)
F1B0.098 (3)0.100 (2)0.0800 (17)−0.053 (2)−0.0076 (16)0.0035 (15)
F2B0.086 (2)0.174 (4)0.093 (2)0.023 (3)−0.0136 (18)0.040 (3)
F3B0.119 (3)0.130 (3)0.0665 (18)−0.051 (2)0.0142 (19)−0.0440 (16)
F1D0.146 (8)0.084 (5)0.079 (5)−0.052 (5)−0.025 (5)0.008 (4)
F2D0.105 (6)0.113 (7)0.084 (5)−0.030 (5)−0.062 (5)0.012 (5)
F3D0.078 (6)0.148 (8)0.112 (7)−0.006 (5)−0.002 (5)−0.010 (6)
O1B0.140 (2)0.0703 (13)0.0708 (13)−0.0528 (14)−0.0189 (13)−0.0111 (10)
O2B0.1372 (19)0.0565 (11)0.0532 (11)−0.0412 (12)−0.0259 (11)−0.0054 (8)
C7B0.0670 (16)0.0506 (13)0.0537 (14)−0.0165 (12)−0.0137 (12)−0.0094 (11)
C8B0.0657 (18)0.0713 (18)0.0547 (15)−0.0147 (15)−0.0106 (13)−0.0108 (13)

Geometric parameters (Å, °)

N1A—C5A1.350 (3)C2B—H2BA0.93
N1A—C1A1.354 (3)C3B—C4B1.356 (4)
N1A—H1NA0.89 (3)C3B—C6B1.499 (4)
N2A—C5A1.330 (3)C4B—C5B1.401 (3)
N2A—H2NA0.855 (18)C4B—H4BA0.93
N2A—H3NA0.850 (19)C6B—H6BA0.96
C1A—C2A1.344 (4)C6B—H6BB0.96
C1A—H1AA0.93C6B—H6BC0.96
C2A—C3A1.408 (4)F1A—C8A1.314 (6)
C2A—H2AA0.93F2A—C8A1.301 (6)
C3A—C4A1.366 (3)F3A—C8A1.336 (6)
C3A—C6A1.499 (4)F1C—C8A1.316 (6)
C4A—C5A1.401 (3)F2C—C8A1.331 (6)
C4A—H4AA0.93F3C—C8A1.306 (6)
C6A—H6AA0.96O1A—C7A1.219 (3)
C6A—H6AB0.96O2A—C7A1.243 (3)
C6A—H6AC0.96C7A—C8A1.522 (4)
N1B—C5B1.351 (3)F1B—C8B1.343 (4)
N1B—C1B1.356 (3)F2B—C8B1.296 (4)
N1B—H1NB0.88 (3)F3B—C8B1.326 (4)
N2B—C5B1.329 (3)F1D—C8B1.297 (6)
N2B—H2NB0.854 (19)F2D—C8B1.307 (7)
N2B—H3NB0.830 (19)F3D—C8B1.269 (8)
C1B—C2B1.338 (4)O1B—C7B1.220 (3)
C1B—H1BB0.95 (3)O2B—C7B1.233 (3)
C2B—C3B1.412 (4)C7B—C8B1.526 (4)
C5A—N1A—C1A122.3 (2)C4B—C3B—C2B118.8 (2)
C5A—N1A—H1NA116.6 (16)C4B—C3B—C6B121.1 (3)
C1A—N1A—H1NA121.0 (16)C2B—C3B—C6B120.0 (3)
C5A—N2A—H2NA121.2 (18)C3B—C4B—C5B120.9 (2)
C5A—N2A—H3NA119 (2)C3B—C4B—H4BA119.5
H2NA—N2A—H3NA119 (3)C5B—C4B—H4BA119.5
C2A—C1A—N1A120.9 (2)N2B—C5B—N1B118.1 (2)
C2A—C1A—H1AA119.5N2B—C5B—C4B123.9 (2)
N1A—C1A—H1AA119.5N1B—C5B—C4B118.0 (2)
C1A—C2A—C3A119.3 (2)C3B—C6B—H6BA109.5
C1A—C2A—H2AA120.3C3B—C6B—H6BB109.5
C3A—C2A—H2AA120.3H6BA—C6B—H6BB109.5
C4A—C3A—C2A118.9 (2)C3B—C6B—H6BC109.5
C4A—C3A—C6A121.2 (2)H6BA—C6B—H6BC109.5
C2A—C3A—C6A119.9 (3)H6BB—C6B—H6BC109.5
C3A—C4A—C5A120.8 (2)O1A—C7A—O2A128.6 (3)
C3A—C4A—H4AA119.6O1A—C7A—C8A116.2 (2)
C5A—C4A—H4AA119.6O2A—C7A—C8A115.2 (2)
N2A—C5A—N1A117.9 (2)F2A—C8A—F1A122.3 (9)
N2A—C5A—C4A124.3 (2)F3C—C8A—F1C114.7 (11)
N1A—C5A—C4A117.7 (2)F3C—C8A—F2C106.7 (7)
C3A—C6A—H6AA109.5F1C—C8A—F2C88.3 (16)
C3A—C6A—H6AB109.5F2A—C8A—F3A104.7 (7)
H6AA—C6A—H6AB109.5F1A—C8A—F3A93.2 (7)
C3A—C6A—H6AC109.5F2A—C8A—C7A112.1 (6)
H6AA—C6A—H6AC109.5F1A—C8A—C7A112.8 (6)
H6AB—C6A—H6AC109.5F3A—C8A—C7A108.9 (5)
C5B—N1B—C1B121.7 (2)O1B—C7B—O2B128.6 (3)
C5B—N1B—H1NB118.8 (17)O1B—C7B—C8B116.2 (2)
C1B—N1B—H1NB119.3 (16)O2B—C7B—C8B115.2 (2)
C5B—N2B—H2NB120 (2)F3D—C8B—F1D116.9 (9)
C5B—N2B—H3NB120 (2)F3D—C8B—F2D103.4 (9)
H2NB—N2B—H3NB120 (3)F1D—C8B—F2D103.7 (7)
C2B—C1B—N1B121.1 (2)F2B—C8B—F3B108.5 (4)
C2B—C1B—H1BB125.9 (17)F2B—C8B—F1B106.5 (4)
N1B—C1B—H1BB112.9 (17)F3B—C8B—F1B101.8 (3)
C1B—C2B—C3B119.4 (2)F2B—C8B—C7B113.0 (3)
C1B—C2B—H2BA120.3F3B—C8B—C7B112.8 (3)
C3B—C2B—H2BA120.3F1B—C8B—C7B113.5 (2)
C5A—N1A—C1A—C2A0.2 (4)O1A—C7A—C8A—F3C20.8 (11)
N1A—C1A—C2A—C3A−0.3 (4)O2A—C7A—C8A—F3C−159.7 (11)
C1A—C2A—C3A—C4A0.2 (4)O1A—C7A—C8A—F1A141.7 (6)
C1A—C2A—C3A—C6A−179.2 (3)O2A—C7A—C8A—F1A−38.8 (6)
C2A—C3A—C4A—C5A0.0 (4)O1A—C7A—C8A—F1C159.8 (10)
C6A—C3A—C4A—C5A179.4 (2)O2A—C7A—C8A—F1C−20.6 (10)
C1A—N1A—C5A—N2A179.6 (2)O1A—C7A—C8A—F2C−101.8 (11)
C1A—N1A—C5A—C4A0.0 (3)O2A—C7A—C8A—F2C77.7 (11)
C3A—C4A—C5A—N2A−179.7 (2)O1A—C7A—C8A—F3A39.7 (6)
C3A—C4A—C5A—N1A−0.1 (3)O2A—C7A—C8A—F3A−140.8 (6)
C5B—N1B—C1B—C2B0.1 (4)O1B—C7B—C8B—F3D−57.7 (10)
N1B—C1B—C2B—C3B0.6 (4)O2B—C7B—C8B—F3D122.7 (10)
C1B—C2B—C3B—C4B−1.2 (4)O1B—C7B—C8B—F2B96.6 (5)
C1B—C2B—C3B—C6B178.8 (3)O2B—C7B—C8B—F2B−83.0 (5)
C2B—C3B—C4B—C5B1.1 (4)O1B—C7B—C8B—F1D169.3 (10)
C6B—C3B—C4B—C5B−179.0 (3)O2B—C7B—C8B—F1D−10.3 (10)
C1B—N1B—C5B—N2B179.7 (3)O1B—C7B—C8B—F2D55.9 (8)
C1B—N1B—C5B—C4B−0.3 (4)O2B—C7B—C8B—F2D−123.7 (7)
C3B—C4B—C5B—N2B179.6 (3)O1B—C7B—C8B—F3B−26.9 (4)
C3B—C4B—C5B—N1B−0.3 (4)O2B—C7B—C8B—F3B153.5 (3)
O1A—C7A—C8A—F2A−75.6 (8)O1B—C7B—C8B—F1B−142.0 (3)
O2A—C7A—C8A—F2A103.9 (8)O2B—C7B—C8B—F1B38.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O2Ai0.89 (3)1.85 (3)2.740 (3)173 (2)
N2A—H2NA···O1Ai0.85 (2)2.02 (2)2.871 (3)176 (2)
N2A—H3NA···O2Bii0.85 (2)2.04 (2)2.835 (3)156 (2)
N1B—H1NB···O2Bii0.87 (3)1.86 (3)2.734 (3)175 (2)
N2B—H2NB···O1Bii0.85 (2)2.01 (2)2.858 (3)176 (3)
N2B—H3NB···O2Aiii0.83 (3)2.04 (2)2.848 (3)164 (3)
C4A—H4AA···O1Biv0.932.573.423 (3)153
C6B—H6BA···O1Av0.962.573.518 (5)169

Symmetry codes: (i) x−1, y+1, z; (ii) x, y, z−1; (iii) x−1, y, z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5038).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o335. [PMC free article] [PubMed]
  • Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
  • Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
  • Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
  • Kvick, Å. & Noordik, J. (1977). Acta Cryst. B33, 2862–2866.
  • Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles In Life and Society. New York: Wiley.
  • Rodrigues, V. H., Paixão, J. A., Costa, M. M. R. R. & Matos Beja, A. (2001). Acta Cryst. C57, 417–420. [PubMed]
  • Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shen, H., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, o1129. [PMC free article] [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography